4 resultados para DYNAMICAL THEORY

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation is concerned with various fundamental aspects of the linearized dynamical theory for mechanically homogeneous and isotropic elastic solids. First, the uniqueness and reciprocal theorems of dynamic elasticity are extended to unbounded domains with the aid of a generalized energy identity and a lemma on the prolonged quiescence of the far field, which are established for this purpose. Next, the basic singular solutions of elastodynamics are studied and used to generate systematically Love's integral identity for the displacement field, as well as an associated identity for the field of stress. These results, in conjunction with suitably defined Green's functions, are applied to the construction of integral representations for the solution of the first and second boundary-initial value problem. Finally, a uniqueness theorem for dynamic concentrated-load problems is obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.

Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis covers a range of topics in numerical and analytical relativity, centered around introducing tools and methodologies for the study of dynamical spacetimes. The scope of the studies is limited to classical (as opposed to quantum) vacuum spacetimes described by Einstein's general theory of relativity. The numerical works presented here are carried out within the Spectral Einstein Code (SpEC) infrastructure, while analytical calculations extensively utilize Wolfram's Mathematica program.

We begin by examining highly dynamical spacetimes such as binary black hole mergers, which can be investigated using numerical simulations. However, there are difficulties in interpreting the output of such simulations. One difficulty stems from the lack of a canonical coordinate system (henceforth referred to as gauge freedom) and tetrad, against which quantities such as Newman-Penrose Psi_4 (usually interpreted as the gravitational wave part of curvature) should be measured. We tackle this problem in Chapter 2 by introducing a set of geometrically motivated coordinates that are independent of the simulation gauge choice, as well as a quasi-Kinnersley tetrad, also invariant under gauge changes in addition to being optimally suited to the task of gravitational wave extraction.

Another difficulty arises from the need to condense the overwhelming amount of data generated by the numerical simulations. In order to extract physical information in a succinct and transparent manner, one may define a version of gravitational field lines and field strength using spatial projections of the Weyl curvature tensor. Introduction, investigation and utilization of these quantities will constitute the main content in Chapters 3 through 6.

For the last two chapters, we turn to the analytical study of a simpler dynamical spacetime, namely a perturbed Kerr black hole. We will introduce in Chapter 7 a new analytical approximation to the quasi-normal mode (QNM) frequencies, and relate various properties of these modes to wave packets traveling on unstable photon orbits around the black hole. In Chapter 8, we study a bifurcation in the QNM spectrum as the spin of the black hole a approaches extremality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earth's largest geoid anomalies occur at the lowest spherical harmonic degrees, or longest wavelengths, and are primarily the result of mantle convection. Thermal density contrasts due to convection are partially compensated by boundary deformations due to viscous flow whose effects must be included in order to obtain a dynamically consistent model for the geoid. These deformations occur rapidly with respect to the timescale for convection, and we have analytically calculated geoid response kernels for steady-state, viscous, incompressible, self-gravitating, layered Earth models which include the deformation of boundaries due to internal loads. Both the sign and magnitude of geoid anomalies depend strongly upon the viscosity structure of the mantle as well as the possible presence of chemical layering.

Correlations of various global geophysical data sets with the observed geoid can be used to construct theoretical geoid models which constrain the dynamics of mantle convection. Surface features such as topography and plate velocities are not obviously related to the low-degree geoid, with the exception of subduction zones which are characterized by geoid highs (degrees 4-9). Recent models for seismic heterogeneity in the mantle provide additional constraints, and much of the low-degree (2-3) geoid can be attributed to seismically inferred density anomalies in the lower mantle. The Earth's largest geoid highs are underlain by low density material in the lower mantle, thus requiring compensating deformations of the Earth's surface. A dynamical model for whole mantle convection with a low viscosity upper mantle can explain these observations and successfully predicts more than 80% of the observed geoid variance.

Temperature variations associated with density anomalies in the man tie cause lateral viscosity variations whose effects are not included in the analytical models. However, perturbation theory and numerical tests show that broad-scale lateral viscosity variations are much less important than radial variations; in this respect, geoid models, which depend upon steady-state surface deformations, may provide more reliable constraints on mantle structure than inferences from transient phenomena such as postglacial rebound. Stronger, smaller-scale viscosity variations associated with mantle plumes and subducting slabs may be more important. On the basis of numerical modelling of low viscosity plumes, we conclude that the global association of geoid highs (after slab effects are removed) with hotspots and, perhaps, mantle plumes, is the result of hot, upwelling material in the lower mantle; this conclusion does not depend strongly upon plume rheology. The global distribution of hotspots and the dominant, low-degree geoid highs may correspond to a dominant mode of convection stabilized by the ancient Pangean continental assemblage.