18 resultados para DOWNSTREAM
em CaltechTHESIS
Resumo:
FGF/Erk MAP Kinase Signaling is a central regulator of mouse embryonic stem cell (mESC) self-renewal, pluripotency and differentiation. However, the mechanistic connection between this signaling pathway activity and the gene circuits stabilizing mESCs in vitro remain unclear. Here we show that FGF signaling post-transcriptionally regulates the mESC transcription factor network by controlling the expression of Brf1 (zfp36l1), an AU-rich element mRNA binding protein. Changes in Brf1 level disrupts the expression of core pluripotency-associated genes and attenuates mESC self-renewal without inducing differentiation. These regulatory effects are mediated by rapid and direct destabilization of Brf1 targets, such as Nanog mRNA. Interestingly, enhancing Brf1 expression does not compromise mESC pluripotency, but does preferentially regulate differentiation to mesendoderm by accelerating the expression of primitive streak markers. Together, these studies demonstrate that FGF signals utilize targeted mRNA degradation by Brf1 to enable rapid post-transcriptional control of gene expression.
Resumo:
The equations of motion for the flow of a mixture of liquid droplets, their vapor, and an inert gas through a normal shock wave are derived. A set of equations is obtained which is solved numerically for the equilibrium conditions far downstream of the shock. The equations describing the process of reaching equilibrium are also obtained. This is a set of first-order nonlinear differential equations and must also be solved numerically. The detailed equilibration process is obtained for several cases and the results are discussed.
Resumo:
I. The attenuation of sound due to particles suspended in a gas was first calculated by Sewell and later by Epstein in their classical works on the propagation of sound in a two-phase medium. In their work, and in more recent works which include calculations of sound dispersion, the calculations were made for systems in which there was no mass transfer between the two phases. In the present work, mass transfer between phases is included in the calculations.
The attenuation and dispersion of sound in a two-phase condensing medium are calculated as functions of frequency. The medium in which the sound propagates consists of a gaseous phase, a mixture of inert gas and condensable vapor, which contains condensable liquid droplets. The droplets, which interact with the gaseous phase through the interchange of momentum, energy, and mass (through evaporation and condensation), are treated from the continuum viewpoint. Limiting cases, for flow either frozen or in equilibrium with respect to the various exchange processes, help demonstrate the effects of mass transfer between phases. Included in the calculation is the effect of thermal relaxation within droplets. Pressure relaxation between the two phases is examined, but is not included as a contributing factor because it is of interest only at much higher frequencies than the other relaxation processes. The results for a system typical of sodium droplets in sodium vapor are compared to calculations in which there is no mass exchange between phases. It is found that the maximum attenuation is about 25 per cent greater and occurs at about one-half the frequency for the case which includes mass transfer, and that the dispersion at low frequencies is about 35 per cent greater. Results for different values of latent heat are compared.
II. In the flow of a gas-particle mixture through a nozzle, a normal shock may exist in the diverging section of the nozzle. In Marble’s calculation for a shock in a constant area duct, the shock was described as a usual gas-dynamic shock followed by a relaxation zone in which the gas and particles return to equilibrium. The thickness of this zone, which is the total shock thickness in the gas-particle mixture, is of the order of the relaxation distance for a particle in the gas. In a nozzle, the area may change significantly over this relaxation zone so that the solution for a constant area duct is no longer adequate to describe the flow. In the present work, an asymptotic solution, which accounts for the area change, is obtained for the flow of a gas-particle mixture downstream of the shock in a nozzle, under the assumption of small slip between the particles and gas. This amounts to the assumption that the shock thickness is small compared with the length of the nozzle. The shock solution, valid in the region near the shock, is matched to the well known small-slip solution, which is valid in the flow downstream of the shock, to obtain a composite solution valid for the entire flow region. The solution is applied to a conical nozzle. A discussion of methods of finding the location of a shock in a nozzle is included.
Resumo:
The sea urchin embryonic skeleton, or spicule, is deposited by mesenchymal progeny of four precursor cells, the micromeres, which are determined to the skeletogenic pathway by a process known as cytoplasmic localization. A gene encoding one of the major products of the skeletogenic mesenchyme, a prominent 50 kD protein of the spicule matrix, has been characterized in detail. cDNA clones were first isolated by antibody screening of a phage expression library, followed by isolation of homologous genomic clones. The gene, known as SM50, is single copy in the sea urchin genome, is divided into two exons of 213 and 1682 bp, and is expressed only in skeletogenic cells. Transcripts are first detectable at the 120 cell stage, shortly after the segregation of the skeletogenic precursors from the rest of the embryo. The SM50 open reading frame begins within the first exon, is 450 amino acids in length, and contains a loosely repeated 13 amino acid motif rich in acidic residues which accounts for 45% of the protein and which is possibly involved in interaction with the mineral phase of the spicule.
The important cis-acting regions of the SM50 gene necessary for proper regulation of expression were identified by gene transfer experiments. A 562 bp promoter fragment, containing 438 bp of 5' promoter sequence and 124 bp of the SM50 first exon (including the SM50 initiation codon), was both necessary and sufficient to direct high levels of expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene specifically in the skeletogenic cells. Removal of promoter sequences between positions -2200 and -438, and of transcribed regions downstream of +124 (including the SM50 intron), had no effect on the spatial or transcriptional activity of the transgenes.
Regulatory proteins that interact with the SM50 promoter were identified by the gel retardation assay, using bulk embryo mesenchyme blastula stage nuclear proteins. Five protein binding sites were identified and mapped to various degrees of resolution. Two sites are homologous, may be enhancer elements, and at least one is required for expression. Two additional sites are also present in the promoter of the aboral ectoderm specific cytoskeletal actin gene CyIIIa; one of these is a CCAA T element, the other a putative repressor element. The fifth site overlaps the binding site of the putative repressor and may function as a positive regulator by interfering with binding of the repressor. All of the proteins are detectable in nuclear extracts prepared from 64 cell stage embryos, a stage just before expression of SM50 is initiated, as well as from blastula and gastrula stage; the putative enhancer binding protein may be maternal as well.
Resumo:
Notch signaling acts in many diverse developmental spatial patterning processes. To better understand why this particular pathway is employed where it is and how downstream feedbacks interact with the signaling system to drive patterning, we have pursued three aims: (i) to quantitatively measure the Notch system's signal input/output (I/O) relationship in cell culture, (ii) to use the quantitative I/O relationship to computationally predict patterning outcomes of downstream feedbacks, and (iii) to reconstitute a Notch-mediated lateral induction feedback (in which Notch signaling upregulates the expression of Delta) in cell culture. The quantitative Notch I/O relationship revealed that in addition to the trans-activation between Notch and Delta on neighboring cells there is also a strong, mutual cis-inactivation between Notch and Delta on the same cell. This feature tends to amplify small differences between cells. Incorporating our improved understanding of the signaling system into simulations of different types of downstream feedbacks and boundary conditions lent us several insights into their function. The Notch system converts a shallow gradient of Delta expression into a sharp band of Notch signaling without any sort of feedback at all, in a system motivated by the Drosophila wing vein. It also improves the robustness of lateral inhibition patterning, where signal downregulates ligand expression, by removing the requirement for explicit cooperativity in the feedback and permitting an exceptionally simple mechanism for the pattern. When coupled to a downstream lateral induction feedback, the Notch system supports the propagation of a signaling front across a tissue to convert a large area from one state to another with only a local source of initial stimulation. It is also capable of converting a slowly-varying gradient in parameters into a sharp delineation between high- and low-ligand populations of cells, a pattern reminiscent of smooth muscle specification around artery walls. Finally, by implementing a version of the lateral induction feedback architecture modified with the addition of an autoregulatory positive feedback loop, we were able to generate cells that produce enough cis ligand when stimulated by trans ligand to themselves transmit signal to neighboring cells, which is the hallmark of lateral induction.
Resumo:
Interleukin 2 (IL2) is the primary growth hormone used by mature T cells and this lymphokine plays an important role in the magnification of cell-mediated immune responses. Under normal circumstances its expression is limited to antigen-activated type 1 helper T cells (TH1) and the ability to transcribe this gene is often regarded as evidence for commitment to this developmental lineage. There is, however, abundant evidence than many non-TH1 T cells, under appropriate conditions, possess the ability to express this gene. Of paramount interest in the study of T-cell development is the mechanisms by which differentiating thymocytes are endowed with particular combinations of cell surface proteins and response repertoires. For example, why do most helper T cells express the CD4 differentiation antigen?
As a first step in understanding these developmental processes the gene encoding IL2 was isolated from a mouse genomic library by probing with a conspecific IL2 cDNA. The sequence of the 5' flanking region from + 1 to -2800 was determined and compared to the previously reported human sequence. Extensive identity exists between +1 and -580 (86%) and sites previously shown to be crucial for the proper expression of the human gene are well conserved in both sequence location in the mouse counterpart.
Transient expression assays were used to evaluate the contribution of various genomic sequences to high-level gene expression mediated by a cloned IL2 promoter fragment. Differing lengths of 5' flanking DNA, all terminating in the 5' untranslated region, were linked to a reporter gene, bacterial chloramphenicol acetyltransferase (CAT) and enzyme activity was measured after introduction into IL2-producing cell lines. No CAT was ever detected without stimulation of the recipient cells. A cloned promoter fragment containing only 321 bp of upstream DNA was expressed well in both Jurkat and EL4.El cells. Addition of intragenic or downstream DNA to these 5' IL2-CAT constructs showed that no obvious regulatory regions resided there. However, increasing the extent of 5' DNA from -321 to -2800 revealed several positive and negative regulatory elements. One negative region that was well characterized resided between -750 and -1000 and consisted almost exclusively of alternating purine and pyrimidines. There is no sequence resembling this in the human gene now, but there is evidence that there may have once been.
No region, when deleted, could relax either the stringent induction-dependence on cell-type specificity displayed by this promoter. Reagents that modulated endogenous IL2 expression, such as cAMP, cyclosporin A, and IL1, affected expression of the 5' IL2-CAT constructs also. For a given reagent, expression from all expressible constructs was suppressed or enhanced to the same extent. This suggests that these modulators affect IL2 expression through perturbation of a central inductive signal rather than by summation of the effects of discrete, independently regulated, negative and positive transcription factors.
Resumo:
Nicotinic acetylcholine receptors (nAChRs) are pentameric, ligand-gated, cation channels found throughout the central and peripheral nervous system, whose endogenous ligand is acetylcholine, but which can also be acted upon by nicotine. The subunit compositions of nAChR determine their physiological and pharmacological properties, with different subunits expressed in different combinations or areas throughout the brain. The behavioral and physiological effects of nicotine are elicited by its agonistic and desensitizing actions selectively on neuronal nAChRs. The midbrain is of particular interest due to its population of nAChRs expressed on dopaminergic neurons, which are important for reward and reinforcement, and possibly contribute to nicotine dependence. The α6-subunit is found on dopaminergic neurons but very few other regions of the brain, making it an interesting drug target. We assayed a novel nicotinic agonist, called TI-299423 or TC299, for its possible selectivity for α6-containing nAChRs. Our goal was to isolate the role of α6-containing nAChRs in nicotine reward and reinforcement, and provide insight into the search for more effective smoking cessation compounds. This was done using a variety of in vitro and behavioral assays, aimed dually at understanding TI-299423’s exact mechanism of action and its downstream effects. Additionally, we looked at the effects of another compound, menthol, on nicotine reward. Understanding how reward is generated in the cholinergic system and how that is modulated by other compounds contributes to a better understand of our complex neural circuitry and provides insight for the future development of therapeutics.
Resumo:
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.
Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.
The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
Resumo:
The early stage of laminar-turbulent transition in a hypervelocity boundary layer is studied using a combination of modal linear stability analysis, transient growth analysis, and direct numerical simulation. Modal stability analysis is used to clarify the behavior of first and second mode instabilities on flat plates and sharp cones for a wide range of high enthalpy flow conditions relevant to experiments in impulse facilities. Vibrational nonequilibrium is included in this analysis, its influence on the stability properties is investigated, and simple models for predicting when it is important are described.
Transient growth analysis is used to determine the optimal initial conditions that lead to the largest possible energy amplification within the flow. Such analysis is performed for both spatially and temporally evolving disturbances. The analysis again targets flows that have large stagnation enthalpy, such as those found in shock tunnels, expansion tubes, and atmospheric flight at high Mach numbers, and clarifies the effects of Mach number and wall temperature on the amplification achieved. Direct comparisons between modal and non-modal growth are made to determine the relative importance of these mechanisms under different flow regimes.
Conventional stability analysis employs the assumption that disturbances evolve with either a fixed frequency (spatial analysis) or a fixed wavenumber (temporal analysis). Direct numerical simulations are employed to relax these assumptions and investigate the downstream propagation of wave packets that are localized in space and time, and hence contain a distribution of frequencies and wavenumbers. Such wave packets are commonly observed in experiments and hence their amplification is highly relevant to boundary layer transition prediction. It is demonstrated that such localized wave packets experience much less growth than is predicted by spatial stability analysis, and therefore it is essential that the bandwidth of localized noise sources that excite the instability be taken into account in making transition estimates. A simple model based on linear stability theory is also developed which yields comparable results with an enormous reduction in computational expense. This enables the amplification of finite-width wave packets to be taken into account in transition prediction.
Resumo:
This study investigates lateral mixing of tracer fluids in turbulent open-channel flows when the tracer and ambient fluids have different densities. Longitudinal dispersion in flows with longitudinal density gradients is investigated also.
Lateral mixing was studied in a laboratory flume by introducing fluid tracers at the ambient flow velocity continuously and uniformly across a fraction of the flume width and over the entire depth of the ambient flow. Fluid samples were taken to obtain concentration distributions in cross-sections at various distances, x, downstream from the tracer source. The data were used to calculate variances of the lateral distributions of the depth-averaged concentration. When there was a difference in density between the tracer and the ambient fluids, lateral mixing close to the source was enhanced by density-induced secondary flows; however, far downstream where the density gradients were small, lateral mixing rates were independent of the initial density difference. A dimensional analysis of the problem and the data show that the normalized variance is a function of only three dimensionless numbers, which represent: (1) the x-coordinate, (2) the source width, and (3) the buoyancy flux from the source.
A simplified set of equations of motion for a fluid with a horizontal density gradient was integrated to give an expression for the density-induced velocity distribution. The dispersion coefficient due to this velocity distribution was also obtained. Using this dispersion coefficient in an analysis for predicting lateral mixing rates in the experiments of this investigation gave only qualitative agreement with the data. However, predicted longitudinal salinity distributions in an idealized laboratory estuary agree well with published data.
Resumo:
This thesis aims at enhancing our fundamental understanding of the East Asian summer monsoon (EASM), and mechanisms implicated in its climatology in present-day and warmer climates. We focus on the most prominent feature of the EASM, i.e., the so-called Meiyu-Baiu (MB), which is characterized by a well-defined, southwest to northeast elongated quasi-stationary rainfall band, spanning from eastern China to Japan and into the northwestern Pacific Ocean in June and July.
We begin with an observational study of the energetics of the MB front in present-day climate. Analyses of the moist static energy (MSE) budget of the MB front indicate that horizontal advection of moist enthalpy, primarily of dry enthalpy, sustains the front in a region of otherwise negative net energy input into the atmospheric column. A decomposition of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional stationary eddy velocity as the most influential factors determining the pattern of horizontal moist enthalpy advection. Numerical simulations in which the Tibetan Plateau (TP) is either retained or removed show that the TP influences the stationary enthalpy flux, and hence the MB front, primarily by changing the meridional stationary eddy velocity, with reinforced southerly wind on the northwestern flank of the north Pacific subtropical high (NPSH) over the MB region and northerly wind to its north. Changes in the longitudinal thermal gradient are mainly confined to the near downstream of the TP, with the resulting changes in zonal warm air advection having a lesser impact on the rainfall in the extended MB region.
Similar mechanisms are shown to be implicated in present climate simulations in the Couple Model Intercomparison Project - Phase 5 (CMIP5) models. We find that the spatial distribution of the EASM precipitation simulated by different models is highly correlated with the meridional stationary eddy velocity. The correlation becomes more robust when energy fluxes into the atmospheric column are considered, consistent with the observational analyses. The spread in the area-averaged rainfall amount can be partially explained by the spread in the simulated globally-averaged precipitation, with the rest primarily due to the lower-level meridional wind convergence. Clear relationships between precipitation and zonal and meridional eddy velocities are observed.
Finally, the response of the EASM to greenhouse gas forcing is investigated at different time scales in CMIP5 model simulations. The reduction of radiative cooling and the increase in continental surface temperature occur much more rapidly than changes in sea surface temperatures (SSTs). Without changes in SSTs, the rainfall in the monsoon region decreases (increases) over ocean (land) in most models. On longer time scales, as SSTs increase, rainfall changes are opposite. The total response to atmospheric CO^2 forcing and subsequent SST warming is a large (modest) increase in rainfall over ocean (land) in the EASM region. Dynamic changes, in spite of significant contributions from the thermodynamic component, play an important role in setting up the spatial pattern of precipitation changes. Rainfall anomalies over East China are a direct consequence of local land-sea contrast, while changes in the larger-scale oceanic rainfall band are closely associated with the displacement of the larger-scale NPSH. Numerical simulations show that topography and SST patterns play an important role in rainfall changes in the EASM region.
Resumo:
This study concerns the longitudinal dispersion of fluid particles which are initially distributed uninformly over one cross section of a uniform, steady, turbulent open channel flow. The primary focus is on developing a method to predict the rate of dispersion in a natural stream.
Taylor's method of determining a dispersion coefficient, previously applied to flow in pipes and two-dimensional open channels, is extended to a class of three-dimensional flows which have large width-to-depth ratios, and in which the velocity varies continuously with lateral cross-sectional position. Most natural streams are included. The dispersion coefficient for a natural stream may be predicted from measurements of the channel cross-sectional geometry, the cross-sectional distribution of velocity, and the overall channel shear velocity. Tracer experiments are not required.
Large values of the dimensionless dispersion coefficient D/rU* are explained by lateral variations in downstream velocity. In effect, the characteristic length of the cross section is shown to be proportional to the width, rather than the hydraulic radius. The dimensionless dispersion coefficient depends approximately on the square of the width to depth ratio.
A numerical program is given which is capable of generating the entire dispersion pattern downstream from an instantaneous point or plane source of pollutant. The program is verified by the theory for two-dimensional flow, and gives results in good agreement with laboratory and field experiments.
Both laboratory and field experiments are described. Twenty-one laboratory experiments were conducted: thirteen in two-dimensional flows, over both smooth and roughened bottoms; and eight in three-dimensional flows, formed by adding extreme side roughness to produce lateral velocity variations. Four field experiments were conducted in the Green-Duwamish River, Washington.
Both laboratory and flume experiments prove that in three-dimensional flow the dominant mechanism for dispersion is lateral velocity variation. For instance, in one laboratory experiment the dimensionless dispersion coefficient D/rU* (where r is the hydraulic radius and U* the shear velocity) was increased by a factory of ten by roughening the channel banks. In three-dimensional laboratory flow, D/rU* varied from 190 to 640, a typical range for natural streams. For each experiment, the measured dispersion coefficient agreed with that predicted by the extension of Taylor's analysis within a maximum error of 15%. For the Green-Duwamish River, the average experimentally measured dispersion coefficient was within 5% of the prediction.
Resumo:
Erosion is concentrated in steep landscapes such that, despite accounting for only a small fraction of Earth’s total surface area, these areas regulate the flux of sediment to downstream basins, and their rugged morphology records transient changes (or lack thereof) in geologic and climatic forcing. Steep landscapes are geomorphically active; large sediment fluxes and rapid landscape evolution rates can create or destroy habitat for humans and wildlife alike, and landslides, debris flows, and floods common in mountainous areas represent a persistent natural and structural hazard. Despite the central role that steep landscapes play in the geosciences and in landscape management, the processes controlling their evolution have been poorly studied compared to lower-gradient areas. This thesis focuses on the basic mechanics of sediment transport and bedrock incision in steep landscapes, as these are the fundamental processes which set the pace and style of landscape evolution. Chapter 1 examines the spatial distribution of slow-moving landslides; these landslides can dominate sediment fluxes to river networks, but the controls on their occurrence are poorly understood. Using a case-study along the San Andreas Fault, California, I show that slow-moving landslides preferentially occur near the fault, suggesting a rock-strength control on landslide distribution. Chapter 2 provides the first field-measurements of incipient sediment motion in streams steeper than 14% and shows a large influence of slope-dependent flow hydraulics and grain-scale roughness on particle motion. Chapter 3 presents experimental evidence for bedrock erosion by suspended sediment, suggesting that, in contrast to prevailing theoretical predictions, suspension-regime transport in steep streams can be the dominant erosion agent. Steep streams are often characterized by the presence of waterfalls and bedrock steps which can have locally high rates of erosion; Chapters 4 and 5 present newly developed, experimentally validated theory on sediment transport through and bedrock erosion in waterfall plunge pools. Finally, Chapter 6 explores the formation of a bedrock slot canyon where interactions between sediment transport and bedrock incision lead to the formation of upstream-propagating bedrock step-pools and waterfalls.
Resumo:
Gaseous nitrogen and argon were injected into a primary stream of air moving at Mach 2.56. The gases were injected at secondary to primary total pressure ratios from 3.2 to 28.6 through four different nozzles. Two nozzles, one sonic and one supersonic (M = 3.26), injected normal to the primary stream; and two sonic nozzles injected at 45° angles to the primary flow, one injecting upstream and the other downstream. Data consisted of static pressure measurements on the wall near the injector, total pressure profiles in the wake of the injectant plume, and concentration measurements downstream of the flow. Scale parameters were calculated based upon an analytical model of the flow field and their validity verified by experimental results. These scale heights were used to compare normalized wall side forces for the different nozzles and to compare the mixing of the two streams.
Resumo:
Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).
Part I
A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.
Part II
The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.
Part III
Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.
Part IV
The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.
For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.
The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.
Part V
For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.