29 resultados para DNA biosensor
em CaltechTHESIS
Resumo:
DNA recognition is an essential biological process responsible for the regulation of cellular functions including protein synthesis and cell division and is implicated in the mechanism of action of some anticancer drugs. Studies directed towards defining the elements responsible for sequence specific DNA recognition through the study of the interactions of synthetic organic ligands with DNA are described.
DNA recognition by poly-N-methylpyrrolecarboxamides was studied by the synthesis and characterization of a series of molecules where the number of contiguous N-methylpyrrolecarboxamide units was increased from 2 to 9. The effect of this incremental change in structure on DNA recognition has been investigated at base pair resolution using affinity cleaving and MPE•Fe(II) footprinting techniques. These studies led to a quantitative relationship between the number of amides in the molecule and the DNA binding site size. This relationship is called the n + 1 rule and it states that a poly-N methylpyrrolecarboxamide molecule with n amides will bind n + 1 base pairs of DNA. This rule is consistent with a model where the carboxamides of these compounds form three center bridging hydrogen bonds between adjacent base pairs on opposite strands of the helix. The poly-N methylpyrrolecarboxamide recognition element was found to preferentially bind poly dA•poly dT stretches; however, both binding site selection and orientation were found to be affected by flanking sequences. Cleavage of large DNA is also described.
One approach towards the design of molecules that bind large sequences of double helical DNA sequence specifically is to couple DNA binding subunits of similar or diverse base pair specificity. Bis-EDTA-distamycin-fumaramide (BEDF) is an octaamide dimer of two tri-N methylpyrrolecarboxamide subunits linked by fumaramide. DNA recognition by BEDF was compared to P7E, an octaamide molecule containing seven consecutive pyrroles. These two compounds were found to recognize the same sites on pBR322 with approximately the same affinities demonstrating that fumaramide is an effective linking element for Nmethylpyrrolecarboxamide recognition subunits. Further studies involved the synthesis and characterization of a trimer of tetra-N-methylpyrrolecarboxamide subunits linked by β-alanine ((P4)_(3)E). This trimerization produced a molecule which is capable of recognizing 16 base pairs of A•T DNA, more than a turn and a half of the DNA helix.
DNA footprinting is a powerful direct method for determining the binding sites of proteins and small molecules on heterogeneous DNA. It was found that attachment of EDTA•Fe(II) to spermine creates a molecule, SE•Fe(II), which binds and cleaves DNA sequence neutrally. This lack of specificity provides evidence that at the nucleotide level polyamines recognize heterogeneous DNA independent of sequence and allows SE•Fe(II) to be used as a footprinting reagent. SE•Fe(II) was compared with two other small molecule footprinting reagents, EDTA•Fe(II) and MPE•Fe(II).
Resumo:
Oligonucleotide-directed triple helix formation is one of the most versatile methods for the sequence specific recognition of double helical DNA. Chapter 2 describes affinity cleaving experiments carried out to assess the recognition potential for purine-rich oligonucleotides via the formation of triple helices. Purine-rich oligodeoxyribonucleotides were shown to bind specifically to purine tracts of double helical DNA in the major groove antiparallel to the purine strand of the duplex. Specificity was derived from the formation of reverse Hoogsteen G•GC, A•AT and T•AT triplets and binding was limited to mostly purine tracts. This triple helical structure was stabilized by multivalent cations, destabilized by high concentrations of monovalent cations and was insensitive to pH. A single mismatched base triplet was shown to destabilize a 15 mer triple helix by 1.0 kcal/mole at 25°C. In addition, stability appeared to be correlated to the number of G•GC triplets formed in the triple helix. This structure provides an additional framework as a basis for the design of new sequence specific DNA binding molecules.
In work described in Chapter 3, the triplet specificities and required strand orientations of two classes of DNA triple helices were combined to target double helical sequences containing all four base pairs by alternate strand triple helix formation. This allowed for the use of oligonucleotides containing only natural 3'-5' phosphodiester linkages to simultaneously bind both strands of double helical DNA in the major groove. The stabilities and structures of these alternate strand triple helices depended on whether the binding site sequence was 5'-(purine)_m (pyrimidine)_n-3' or 5'- (pyrimidine)_m (purine)_n-3'.
In Chapter 4, the ability of oligonucleotide-cerium(III) chelates to direct the transesterfication of RNA was investigated. Procedures were developed for the modification of DNA and RNA oligonucleotides with a hexadentate Schiff-base macrocyclic cerium(III) complex. In addition, oligoribonucleotides modified by covalent attachment of the metal complex through two different linker structures were prepared. The ability of these structures to direct transesterification to specific RNA phosphodiesters was assessed by gel electrophoresis. No reproducible cleavage of the RNA strand consistent with transesterification could be detected in any of these experiments.
Resumo:
This thesis describes research pursued in two areas, both involving the design and synthesis of sequence specific DNA-cleaving proteins. The first involves the use of sequence-specific DNA-cleaving metalloproteins to probe the structure of a protein-DNA complex, and the second seeks to develop cleaving moieties capable of DNA cleavage through the generation of a non-diffusible oxidant under physiological conditions.
Chapter One provides a brief review of the literature concerning sequence-specific DNA-binding proteins. Chapter Two summarizes the results of affinity cleaving experiments using leucine zipper-basic region (bZip) DNA-binding proteins. Specifically, the NH_2-terminal locations of a dimer containing the DNA binding domain of the yeast transcriptional activator GCN4 were mapped on the binding sites 5'-CTGACTAAT-3' and 5'ATGACTCTT- 3' using affinity cleaving. Analysis of the DNA cleavage patterns from Fe•EDTA-GCN4(222-281) and (226-281) dimers reveals that the NH_2-termini are in the major groove nine to ten base pairs apart and symmetrically displaced four to five base pairs from the central C of the recognition site. These data are consistent with structural models put forward for this class of DNA binding proteins. The results of these experiments are evaluated in light of the recently published crystal structure for the GCN4-DNA complex. Preliminary investigations of affinity cleaving proteins based on the DNA-binding domains of the bZip proteins Jun and Fos are also described.
Chapter Three describes experiments demonstrating the simultaneous binding of GCN4(226-281) and 1-Methylimidazole-2-carboxamide-netropsin (2-ImN), a designed synthetic peptide which binds in the minor groove of DNA at 5'-TGACT-3' sites as an antiparallel, side-by-side dimer. Through the use of Fe•EDTA-GCN4(226-281) as a sequence-specific footprinting agent, it is shown that the dimeric protein GCN4(226-281) and the dimeric peptide 2- ImN can simultaneously occupy their common binding site in the major and minor grooves of DNA, respectively. The association constants for 2-ImN in the presence and in the absence of Fe•EDTA-GCN4(226-281) are found to be similar, suggesting that the binding of the two dimers is not cooperative.
Chapter Four describes the synthesis and characterization of PBA-β-OH-His- Hin(139-190), a hybrid protein containing the DNA-binding domain of Hin recombinase and the putative iron-binding and oxygen-activating domain of the antitumor antibiotic bleomycin. This 54-residue protein, comprising residues 139-190 of Hin recombinase with the dipeptide pyrimidoblamic acid-β-hydroxy-L-histidine (PBA-β-OH-His) at the NH2 terminus, was synthesized by solid phase methods. PBA-β-OH-His-Hin(139- 190) binds specifically to DNA at four distinct Hin binding sites with affinities comparable to those of the unmodified Hin(139-190). In the presence of dithiothreitol (DTT), Fe•PB-β-OH-His-Hin(139-190) cleaves DNA with specificity remarkably similar to that of Fe•EDTA-Hin(139-190), although with lower efficiency. Analysis of the cleavage pattern suggests that DNA cleavage is mediated through a diffusible species, in contrast with cleavage by bleomycin, which occurs through a non-diffusible oxidant.
Resumo:
Distinct structures delineating the introns of Simian Virus 40 T-antigen and Adenovirus 2 E1A genes have been discovered. The structures, which are centered around the branch points of the genes inserted in supercoiled double-stranded plasmids, are specifically targeted through photoactivated strand cleavage by the metal complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). The DNA sites that are recognized lack sequence homology but are similar in demarcating functionally important sites on the RNA level. The single-stranded DNA fragments corresponding to the coding strands of the genes were also found to fold into a structure apparently identical to that in the supercoiled genes based on the recognition by the metal complex. Further investigation of different single-stranded DNA fragments with other structural probes, such as another metal complex bis(1,10-phenanthroline)(phenanthrenequinone diimine)rhodium(III), AMT (4'aminomethyl-4,5',8 trimethylpsoralen), restriction enzyme Mse I, and mung bean nuclease, showed that the structures require the sequ ences at both ends of the intron plus the flanking sequences but not the middle of the intron. The two ends form independent helices which interact with each other to form the global tertiary structures. Both of the intron structures share similarities to the structure of the Holliday junction, which is also known to be specifically targeted by the former metal complex. These structures may have arisen from early RNA intron structures and may have been used to facilitate the evolution of genes through exon shuffling by acting as target sites for recombinase enzymes.
Resumo:
Life is the result of the execution of molecular programs: like how an embryo is fated to become a human or a whale, or how a person’s appearance is inherited from their parents, many biological phenomena are governed by genetic programs written in DNA molecules. At the core of such programs is the highly reliable base pairing interaction between nucleic acids. DNA nanotechnology exploits the programming power of DNA to build artificial nanostructures, molecular computers, and nanomachines. In particular, DNA origami—which is a simple yet versatile technique that allows one to create various nanoscale shapes and patterns—is at the heart of the technology. In this thesis, I describe the development of programmable self-assembly and reconfiguration of DNA origami nanostructures based on a unique strategy: rather than relying on Watson-Crick base pairing, we developed programmable bonds via the geometric arrangement of stacking interactions, which we termed stacking bonds. We further demonstrated that such bonds can be dynamically reconfigurable.
The first part of this thesis describes the design and implementation of stacking bonds. Our work addresses the fundamental question of whether one can create diverse bond types out of a single kind of attractive interaction—a question first posed implicitly by Francis Crick while seeking a deeper understanding of the origin of life and primitive genetic code. For the creation of multiple specific bonds, we used two different approaches: binary coding and shape coding of geometric arrangement of stacking interaction units, which are called blunt ends. To construct a bond space for each approach, we performed a systematic search using a computer algorithm. We used orthogonal bonds to experimentally implement the connection of five distinct DNA origami nanostructures. We also programmed the bonds to control cis/trans configuration between asymmetric nanostructures.
The second part of this thesis describes the large-scale self-assembly of DNA origami into two-dimensional checkerboard-pattern crystals via surface diffusion. We developed a protocol where the diffusion of DNA origami occurs on a substrate and is dynamically controlled by changing the cationic condition of the system. We used stacking interactions to mediate connections between the origami, because of their potential for reconfiguring during the assembly process. Assembling DNA nanostructures directly on substrate surfaces can benefit nano/microfabrication processes by eliminating a pattern transfer step. At the same time, the use of DNA origami allows high complexity and unique addressability with six-nanometer resolution within each structural unit.
The third part of this thesis describes the use of stacking bonds as dynamically breakable bonds. To break the bonds, we used biological machinery called the ParMRC system extracted from bacteria. The system ensures that, when a cell divides, each daughter cell gets one copy of the cell’s DNA by actively pushing each copy to the opposite poles of the cell. We demonstrate dynamically expandable nanostructures, which makes stacking bonds a promising candidate for reconfigurable connectors for nanoscale machine parts.
Resumo:
Yeast chromosomes contain sequences called ARSs which function as origins of replication in vitro and in vivo. We have carried out a systematic deletion analysis of ARS1, allowing us to define three functionally distinct domains, designated A, B, and C. Domain A is a sequence of 11 to 19bp, containing the core consensus element that is required for replication. The core consensus sequence, A/TTTTATPuTTTA/T, is conserved at all ARSs sequenced to date. A fragment containing only element A and 8 flanking nucleotides enables autonomous replication of centromeric plasmids. These plasmids replicate very inefficiently, suggesting that flanking sequences must be important for ARS function. Domain B also provides important sequences needed for efficient replication. Deletion of domain B drastically increases the doubling times of transformants and reduces plasmid stability. Domain B contains a potential consensus sequence conserved at some ARSs which overlaps a region of bent DNA. Mutational analysis suggests this bent DNA may be important for ARS function. Deletion of domain C has only a slight effect on replication of plasmids carrying those deletions.
We have identified a protein called ARS binding factor I (ABF-I) that binds to the HMR-E ARS and ARS1. We have purified this protein to homogeneity using conventional and oligonucleotide affinity chromatography. The protein has an apparent molecular weight of 135kDa and is present at about 700 molecules per diploid cell, based on the yield of purified protein and in situ antibody staining. DNaseI footprinting reveals that ABF-I binds sequence-specifically to an approximately 24bp sequence that overlaps element Bat ARSl. This same protein binds to and protects a similar size region at the HMR-E ARS.
We also find evidence for another ARS binding protein, ABF-III, based on DN asei footprint analysis and gel retardation assays. The protein protects approximately 22bp adjacent to the ABF-I site. There appears to be no interaction between ABF-I and ABF-III despite the proximity of their binding sites.
To address the function of ABF-I in DNA replication, we have cloned the ABF-I gene using rabbit polyclonal anti-sera and murine monoclonal antibodies against ABF-I to screen a λgt11 expression library. Four EcoRI restriction fragments were isolated which encoded proteins that were recognized by both polyclonal and monoclonal antibodies. A gene disruption can now be constructed to determine the in vivo function of ABF-I.
Resumo:
DNA damage is extremely detrimental to the cell and must be repaired to protect the genome. DNA is capable of conducting charge through the overlapping π-orbitals of stacked bases; this phenomenon is extremely sensitive to the integrity of the π-stack, as perturbations attenuate DNA charge transport (CT). Based on the E. coli base excision repair (BER) proteins EndoIII and MutY, it has recently been proposed that redox-active proteins containing metal clusters can utilize DNA CT to signal one another to locate sites of DNA damage.
To expand our repertoire of proteins that utilize DNA-mediated signaling, we measured the DNA-bound redox potential of the nucleotide excision repair (NER) helicase XPD from Sulfolobus acidocaldarius. A midpoint potential of 82 mV versus NHE was observed, resembling that of the previously reported BER proteins. The redox signal increases in intensity with ATP hydrolysis in only the WT protein and mutants that maintain ATPase activity and not for ATPase-deficient mutants. The signal increase correlates directly with ATP activity, suggesting that DNA-mediated signaling may play a general role in protein signaling. Several mutations in human XPD that lead to XP-related diseases have been identified; using SaXPD, we explored how these mutations, which are conserved in the thermophile, affect protein electrochemistry.
To further understand the electrochemical signaling of XPD, we studied the yeast S. cerevisiae Rad3 protein. ScRad3 mutants were incubated on a DNA-modified electrode and exhibited a similar redox potential to SaXPD. We developed a haploid strain of S. cerevisiae that allowed for easy manipulation of Rad3. In a survival assay, the ATPase- and helicase-deficient mutants show little survival, while the two disease-related mutants exhibit survival similar to WT. When both a WT and G47R (ATPase/helicase deficient) strain were challenged with different DNA damaging agents, both exhibited comparable survival in the presence of hydroxyurea, while with methyl methanesulfonate and camptothecin, the G47R strain exhibits a significant change in growth, suggesting that Rad3 is involved in repairing damage beyond traditional NER substrates. Together, these data expand our understanding of redox-active proteins at the interface of DNA repair.
Resumo:
The aromatic core of double helical DNA possesses the unique and remarkable ability to form a conduit for electrons to travel over exceptionally long molecular distances. This core of π-stacked nucleobases creates an efficient pathway for charge transfer to proceed that is exquisitely sensitive to even subtle perturbations. Ground state electrochemistry of DNA-modified electrodes has been one of the major techniques used both to investigate and to harness the property of DNA-mediated charge transfer. DNA-modified electrodes have been an essential tool for both gaining insights into the fundamental properties of DNA and, due to the exquisite specificity of DNA-mediated charge transfer for the integrity of the π-stack, for use in next generation diagnostic sensing. Here, multiplexed DNA-modified electrodes are used to (i) gain new insights on the electrochemical coupling of metalloproteins to the DNA π-stack with relevance to the fundaments of in vivo DNA-mediated charge transfer and (ii) enhance the overall sensitivity of DNA-mediated reduction for use in the detection of low abundance diagnostic targets.
First, Methylene Blue (MB′) was covalently attached to DNA through a flexible C12 alkyl linker to yield a new redox reporter for DNA electrochemistry measurements with enhanced sensitivity. Tethered, intercalated MB′ was reduced through DNA-mediated charge transport. The redox signal intensity for MB′-dT-C12-DNA was found to be at least 3 fold larger than that of previously used Nile Blue (NB)-dT-DNA, which is coupled to the base stack via direct conjugation. The signal attenuation, due to an intervening mismatch, and therefore the degree of DNA-mediated reduction, does, however, depend on the DNA film morphology and the backfilling agent used to passivate the surface. These results highlight two possible mechanisms for the reduction of MB′ on the DNA-modified electrode that are distinguishable by their kinetics: reduction mediated by the DNA base pair stack and direct surface reduction of MB′ at the electrode. The extent of direct reduction at the surface can be minimized by overall DNA assembly conditions.
Next, a series of intercalation-based DNA-mediated electrochemical reporters were developed, using a flexible alkane linkage to validate and explore their DNA-mediated reduction. The general mechanism for the reduction of distally bound redox active species, covalently tethered to DNA through flexible alkyl linkages, was established to be an intraduplex DNA-mediated pathway. MB, NB, and anthraquinone were covalently tethered to DNA with three different covalent linkages. The extent of electronic coupling of the reporter was shown to correlate with the DNA binding affinity of the redox active species, supporting an intercalative mechanism. These electrochemical signals were shown to be exceptionally sensitive to a single intervening π-stack perturbation, an AC mismatch, in a densely packed DNA monolayer, which further supports that the reduction is DNA-mediated. Finally, this DNA-mediated reduction of MB occurs primarily via intra- rather than inter duplex intercalation, as probed through varying the proximity and integrity of the neighboring duplex DNA. Further gains to electrochemical sensitivity of our DNA-modified devices were then achieved through the application of electrocatalytic signal amplification using these solvent accessible intercalative reporters, MB-dT-C8, and hemoglobin as a novel electron sink. Electrocatalysis offers an excellent means of electrochemical signal amplification, yet in DNA based sensors, its application has been limited due to strict assembly conditions. We describe the use of hemoglobin as a robust and effective electron sink for electrocatalysis in DNA sensing on low density DNA films. Protein shielding of the heme redox center minimizes direct reduction at the electrode surface and permits assays on low density DNA films. Electrocatalysis of MB that is covalently tethered to the DNA by a flexible alkyl linkage allows for efficient interactions with both the base stack and hemoglobin. Consistent suppression of the redox signal upon incorporation of single CA mismatch in the DNA oligomer demonstrates that both the unamplified and the electrocatalytically amplified redox signals are generated through DNA-mediated charge transport. Electrocatalysis with hemoglobin is robust: it is stable to pH and temperature variations. The utility and applicability of electrocatalysis with hemoglobin is demonstrated through restriction enzyme detection, and an enhancement in sensitivity permits femtomole DNA sampling.
Finally, we expanded the application of our multiplexed DNA-modified electrodes to the electrochemical characterization of DNA-bound proteins containing [4Fe-4S] clusters. DNA-modified electrodes have become an essential tool for the characterization of the redox chemistry of DNA repair proteins that contain redox cofactors. Multiplexed analysis of EndonucleaseIII (EndoIII), a DNA repair protein containing a [4Fe-4S] cluster known to be accessible via DNA-mediated charge transport, elucidated subtle differences in the electrochemical behavior as a function of DNA morphology. DNA-bound EndoIII is seen to have two different electron transfer pathways for reduction, either through the DNA base stack or through direct surface reduction. Closely packed DNA films, where the protein has limited surface accessibility, produce electrochemical signals reflecting electron transfer that is DNA-mediated. The electrochemical comparison of EndoIII mutants, including a new family of mutations altering the electrostatics surrounding the [4Fe-4S] cluster, was able to be quantitatively performed. While little change in the midpoint potential was found for this family of mutants, significant variations in the efficiency of DNA-mediated electron transfer were apparent. Based on the stability of these proteins, examined by circular dichroism, we propose that the electron transfer pathway can be perturbed not only by the removal of aromatic residues, but also through changes in solvation near the cluster.
Resumo:
A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.
In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.
In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.
One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.
The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.
Resumo:
A novel method for gene enrichment has been developed and applied to mapping the rRNA genes of two eucaryotic organisms. The method makes use of antibodies to DNA/RNA hybrids prepared by injecting rabbits with the synthetic hybrid poly(rA)•poly(dT). Antibodies which cross-react with non-hybrid nucleic acids were removed from the purified IgG fraction by adsorption on columns of DNA-Sepharose, oligo(dT)-cellulose, and poly(rA)-Sepharose. Subsequent purification of the specific DNA/RNA hybrid antibody was carried out on a column of oligo(dT)-cellulose to which poly(rA) was hybridized. Attachment of these antibodies to CNBr-activated Sepharose produced an affinity resin which specifically binds DNA/RNA hybrids.
In order to map the rDNA of the slime mold Dictyostelium discoideum, R-loops were formed using unsheared nuclear DNA and the 178 and 268 rRNAs of this organism. This mixture was passed through a column containing the affinity resin, and bound molecules containing R- loops were eluted by high salt. This purified rDN A was observed directly in the electron microscope. Evidence was obtained that there is a physical end to Dictyostelium rDN A molecules approximately 10 kilobase pairs (kbp) from the region which codes for the 268 rRNA. This finding is consistent with reports of other investigators that the rRNA genes exist as inverse repeats on extra-chromosomal molecules of DNA unattached to the remainder of the nuclear DNA in this organism.
The same general procedure was used to map the rRNA genes of the rat. Molecules of DNA which contained R-loops formed with the 188 and 288 rRNAs were enriched approximately 150- fold from total genomal rat DNA by two cycles of purification on the affinity column. Electron microscopic measurements of these molecules enabled the construction of an R-loop map of rat rDNA. Eleven of the observed molecules contained three or four R-loops or else two R-loops separated by a long spacer. These observations indicated that the rat rRNA genes are arranged as tandem repeats. The mean length of the repeating units was 37.2 kbp with a standard deviation of 1.3 kbp. These eleven molecules may represent repeating units of exactly the same length within the errors of the measurements, although a certain degree of length heterogeneity cannot be ruled out. If significantly shorter or longer repeating units exist, they are probably much less common than the 37.2 kbp unit.
The last section of the thesis describes the production of antibodies to non-histone chromosomal proteins which have been exposed to the ionic detergent sodium dodecyl sulfate (SDS). The presence of low concentrations of SDS did not seem to affect either production of antibodies or their general specificity. Also, a technique is described for the in situ immunofluorescent detection of protein antigens in polyacrylamide gels.
Resumo:
The discovery that the three ring polyamide Im-Py-Py-Dp containing imidazole (Im) and pyrrole (Py) carboxamides binds the DNA sequence 5'-(A,T)G(A,T)C(A,T)-3' as an antiparallel dimer offers a new model for the design of ligands for specific recognition of sequences in the minor groove containing both G,C and A,T base pairs. In Chapter 2, experiments are described in which the sequential addition of five N- methylpyrrolecarboxamides to the imidazole-pyrrole polyamide Im-Py-Py-Dp affords a series of six homologous polyamides, Im-(Py)2-7-Dp, that differ in the size of their binding site, apparent first order binding affinity, and sequence specificity. These results demonstrate that DNA sequences up to nine base pairs in length can be specifically recognized by imidazole-pyrrole polyamides containing three to seven rings by 2:1 polyamide-DNA complex formation in the minor groove. Recognition of a nine base pair site defines the new lower limit of the binding site size that can be recognized by polyamides containing exclusively imidazole and pyrrolecarboxamides. The results of this study should provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity.
In Chapter 3 the design and synthesis of the hairpin polyamide Im-Py-Im-Py-γ-Im- Py-Im-Py-Dp is described. Quantitative DNase I footprint titration experiments reveal that Im-Py-Im-Py-γ-Im-Py-Im-Py-Dp binds six base pair 5'-(A,T)GCGC(A,T)-3' sequences with 30-fold higher affinity than the unlinked polyamide Im-Py-Im-Py-Dp. The hairpin polyamide does not discriminate between A•T and T•A at the first and sixth positions of the binding site as three sites 5'-TGCGCT-3', 5'-TGCGCA-3', and 5 'AGCGCT- 3' are bound with similar affinity. However, Im-Py-Im-Py-γ-Im-Py-Im-PyDp is specific for and discriminates between G•C and C•G base pairs in the 5'-GCGC-3' core as evidenced by lower affinities for the mismatched sites 5'-AACGCA-3', 5'- TGCGTT-3', 5'-TGCGGT-3', and 5'-ACCGCT-3'.
In Chapter 4, experiments are described in which a kinetically stable hexa-aza Schiff base La3+ complex is covalently attached to a Tat(49-72) peptide which has been shown to bind the HIV-1 TAR RNA sequence. Although these metallo-peptides cleave TAR site-specifically in the hexanucleotide loop to afford products consistent with hydrolysis, a series of control experiments suggests that the observed cleavage is not caused by a sequence-specifically bound Tat(49-72)-La(L)3+ peptide.
Resumo:
The design of synthetic molecules that recognize specific sequences of DNA is an ongoing challenge in molecular medicine. Cell-permeable small molecules targeting predetermined DNA sequences offer a potential approach for offsetting the abnormal effects of misregulated gene-expression. Over the past twenty years, Professor Peter B. Dervan has developed a set of pairing rules for the rational design of minor groove binding polyamides containing pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp). Polyamides have illustrated the capability to permeate cells and inhibit transcription of specific genes in vivo. This provides impetus to identify structural elements that expand the repetoire of polyamide motifs with recognition properties comparable to naturally occurring DNA binding proteins. Through the introduction of chiral amino acids, we have developed chiral polyamides with stereochemically regulated binding characteristics. In addition, chiral substituents have facilitated the development of new polyamide motifs that broaden binding site sizes targetable by this class of ligands.
Resumo:
Small molecules that bind to any predetermined DNA sequence in the human genome are potentially useful tools for molecular biology and human medicine. Polyamides containing N-methylimidazole (Im) N-methylpyrrole (Py) are cell permeable small molecules that bind DNA according to a set of "pairing rules" with affinities and specificities similar to many naturally occurring DNA binding proteins. Py-Im polyamides offer a general approach to the chemical regulation of gene expression. We demonstrate here that polyamide containing a DNA alkylating moiety seco-CBI can specifically direct sequence specific DNA alkylation. We can also control the strand of DNA that is alkylated, depending on the enantiomer of seco-CBI used and the orientation of the polyamide relative to the alkylation site (Chapter 2). This class of molecules has been applied to a gene repair system in collaboration with the Baltimore group at Caltech (Chapter 3). Also reported are additional seco-CBI polyamide conjugates synthesized to study other systems (HIV-1 and COX-2) (Appendix 1).
Resumo:
Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.
In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.
As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.
Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.
Resumo:
Computational protein design (CPD) is a burgeoning field that uses a physical-chemical or knowledge-based scoring function to create protein variants with new or improved properties. This exciting approach has recently been used to generate proteins with entirely new functions, ones that are not observed in naturally occurring proteins. For example, several enzymes were designed to catalyze reactions that are not in the repertoire of any known natural enzyme. In these designs, novel catalytic activity was built de novo (from scratch) into a previously inert protein scaffold. In addition to de novo enzyme design, the computational design of protein-protein interactions can also be used to create novel functionality, such as neutralization of influenza. Our goal here was to design a protein that can self-assemble with DNA into nanowires. We used computational tools to homodimerize a transcription factor that binds a specific sequence of double-stranded DNA. We arranged the protein-protein and protein-DNA binding sites so that the self-assembly could occur in a linear fashion to generate nanowires. Upon mixing our designed protein homodimer with the double-stranded DNA, the molecules immediately self-assembled into nanowires. This nanowire topology was confirmed using atomic force microscopy. Co-crystal structure showed that the nanowire is assembled via the desired interactions. To the best of our knowledge, this is the first example of a protein-DNA self-assembly that does not rely on covalent interactions. We anticipate that this new material will stimulate further interest in the development of advanced biomaterials.