4 resultados para Crest

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural crest is a group of migratory, multipotent stem cells that play a crucial role in many aspects of embryonic development. This uniquely vertebrate cell population forms within the dorsal neural tube but then emigrates out and migrates long distances to different regions of the body. These cells contribute to formation of many structures such as the peripheral nervous system, craniofacial skeleton, and pigmentation of the skin. Why some neural tube cells undergo a change from neural to neural crest cell fate is unknown as is the timing of both onset and cessation of their emigration from the neural tube. In recent years, growing evidence supports an important role for epigenetic regulation as a new mechanism for controlling aspects of neural crest development. In this thesis, I dissect the roles of the de novo DNA methyltransferases (DNMTs) 3A and 3B in neural crest specification, migration and differentiation. First, I show that DNMT3A limits the spatial boundary between neural crest versus neural tube progenitors within the neuroepithelium. DNMT3A promotes neural crest specification by directly mediating repression of neural genes, like Sox2 and Sox3. Its knockdown causes ectopic Sox2 and Sox3 expression at the expense of neural crest territory. Thus, DNMT3A functions as a molecular switch, repressing neural to favor neural crest cell fate. Second, I find that DNMT3B restricts the temporal window during which the neural crest cells emigrate from the dorsal neural tube. Knockdown of DNMT3B causes an excess of neural crest emigration, by extending the time that the neural tube is competent to generate emigrating neural crest cells. In older embryos, this resulted in premature neuronal differentiation. Thus, DNMT3B regulates the duration of neural crest production by the neural tube and the timing of their differentiation. My results in avian embryos suggest that de novo DNA methylation, exerted by both DNMT3A and DNMT3B, plays a dual role in neural crest development, with each individual paralogue apparently functioning during a distinct temporal window. The results suggest that de novo DNA methylation is a critical epigenetic mark used for cell fate restriction of progenitor cells during neural crest cell fate specification. Our discovery provides important insights into the mechanisms that determine whether a cell becomes part of the central nervous system or peripheral cell lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural crest cells are unique to vertebrates and essential to the development and evolution of the craniofacial skeleton. Using a combination of DiI cell lineage tracing, transcriptomics, and analysis of key transcription factors of the Sox Family, I examined neural crest development in the sea lamprey, Petromyzon marinus, as the most basal extant vertebrate from which it is possible to get embryos. The results have uncovered distinct cranial and trunk neural crest subpopulations along the anterior-posterior axis of the lamprey embryo, with a clear separation between the two. However, no evidence of the presence of an intermediate vagal neural crest population was uncovered. Comparing cranial neural crest genes between lamprey and chick, either by examining individual candidate genes or whole genome transcriptome analysis, reveals significant changes in the cranial neural crest gene regulatory network of lamprey compared with chick. In particular, the lamprey cranial neural crest is "missing" several gnathostome cranial crest genes. We speculate that these may underlie the evolutionary divergence of craniofacial development between jawed and jawless vertebrates. Despite the absence of vagal neural crest, DiI-labeling shows that trunk neural crest-derived cells, likely homologous to mammalian Schwann cell precursors, contribute to the lamprey enteric nervous system, potentially representing the most primitive form of neural crest cells contribution to the ENS. Finally, I characterized key members of the Sox Family (Sox B-F) due to their importance in neural crest specification in other species. In comparative studies of the SoxC genes (Sox4, Sox11, and Sox12) in both lamprey and Xenopus, I found similar expression patterns and a novel key role in early neural crest specification, suggesting a conserved role of the SoxC genes amongst vertebrates. Taken together, this work represents important progress in characterizing the early evolution of the neural crest in vertebrates and its role in the transition from jawless to jawed vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular inputs necessary for cell behavior are vital to our understanding of development and disease. Proper cell behavior is necessary for processes ranging from creating one’s face (neural crest migration) to spreading cancer from one tissue to another (invasive metastatic cancers). Identifying the genes and tissues involved in cell behavior not only increases our understanding of biology but also has the potential to create targeted therapies in diseases hallmarked by aberrant cell behavior.

A well-characterized model system is key to determining the molecular and spatial inputs necessary for cell behavior. In this work I present the C. elegans uterine seam cell (utse) as an ideal model for studying cell outgrowth and shape change. The utse is an H-shaped cell within the hermaphrodite uterus that functions in attaching the uterus to the body wall. Over L4 larval stage, the utse grows bidirectionally along the anterior-posterior axis, changing from an ellipsoidal shape to an elongated H-shape. Spatially, the utse requires the presence of the uterine toroid cells, sex muscles, and the anchor cell nucleus in order to properly grow outward. Several gene families are involved in utse development, including Trio, Nav, Rab GTPases, Arp2/3, as well as 54 other genes found from a candidate RNAi screen. The utse can be used as a model system for studying metastatic cancer. Meprin proteases are involved in promoting invasiveness of metastatic cancers and the meprin-likw genes nas-21, nas-22, and toh-1 act similarly within the utse. Studying nas-21 activity has also led to the discovery of novel upstream inhibitors and activators as well as targets of nas-21, some of which have been characterized to affect meprin activity. This illustrates that the utse can be used as an in vivo model for learning more about meprins, as well as various other proteins involved in metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is concerned with some of the properties of roll waves that develop naturally from a turbulent uniform flow in a wide rectangular channel on a constant steep slope . The wave properties considered were depth at the wave crest, depth at the wave trough, wave period, and wave velocity . The primary focus was on the mean values and standard deviations of the crest depths and wave periods at a given station and how these quantities varied with distance along the channel.

The wave properties were measured in a laboratory channel in which roll waves developed naturally from a uniform flow . The Froude number F (F = un/√ghn, un = normal velocity , hn = normal depth, g =acceleration of gravity) ranged from 3. 4 to 6. 0 for channel slopes So of . 05 and . 12 respectively . In the initial phase of their development the roll waves appeared as small amplitude waves with a continuous water surface profile . These small amplitude waves subsequently developed into large amplitude shock waves. Shock waves were found to overtake and combine with other shock waves with the result that the crest depth of the combined wave was larger than the crest depths before the overtake. Once roll waves began to develop, the mean value of the crest depths hnmax increased with distance . Once the shock waves began to overtake, the mean wave period Tav increased approximately linearly with distance.

For a given Froude number and channel slope the observed quantities h-max/hn , T' (T' = So Tav √g/hn), and the standard deviations of h-max/hn and T', could be expressed as unique functions of l/hn (l = distance from beginning of channel) for the two-fold change in hn occurring in the observed flows . A given value of h-max/hn occurred at smaller values of l/hn as the Froude number was increased. For a given value of h /hh-max/hn the growth rate of δh-max/h-maxδl of the shock waves increased as the Froude number was increased.

A laboratory channel was also used to measure the wave properties of periodic permanent roll waves. For a given Froude number and channel slope the h-max/hn vs. T' relation did not agree with a theory in which the weight of the shock front was neglected. After the theory was modified to include this weight, the observed values of h-max/hn were within an average of 6.5 percent of the predicted values, and the maximum discrepancy was 13.5 percent.

For h-max/hn sufficiently large (h-max/hn > approximately 1.5) it was found that the h-max/hn vs. T' relation for natural roll waves was practically identical to the h-max/hn vs. T' relation for periodic permanent roll waves at the same Froude number and slope. As a result of this correspondence between periodic and natural roll waves, the growth rate δh-max/h-maxδl of shock waves was predicted to depend on the channel slope, and this slope dependence was observed in the experiments.