19 resultados para Coverage probabilites

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The organometallic chemistry of the hexagonally close-packed Ru(001) surface has been studied using electron energy loss spectroscopy and thermal desorption mass spectrometry. The molecules that have been studied are acetylene, formamide and ammonia. The chemistry of acetylene and formamide has also been investigated in the presence of coadsorbed hydrogen and oxygen adatoms.

Acetylene is adsorbed molecularly on Ru(001) below approximately 230 K, with rehybridization of the molecule to nearly sp^3 occurring. The principal decomposition products at higher temperatures are ethylidyne (CCH_3) and acetylide (CCH) between 230 and 350 K, and methylidyne (CH) and surface carbon at higher temperatures. Some methylidyne is stable to approximately 700 K. The preadsorption of hydrogen does not alter the decomposition products of acetylene, but reduces the saturation coverage and also leads to the formation of a small amount of ethylene (via an η^2-CHCH_2 species) which desorbs molecularly near 175 K. Preadsorbed oxygen also reduces the saturation coverage of acetylene but has virtually no effect on the nature of the molecularly chemisorbed acetylene. It does, however, lead to the formation of an sp^2-hybridized vinylidene (CCH_2) species in the decomposition of acetylene, in addition to the decomposition products that are formed on the clean surface. There is no molecular desorption of chemisorbed acetylene from clean Ru(001), hydrogen-presaturated Ru(001), or oxygen-presaturated Ru(001).

The adsorption and decomposition of formamide has been studied on clean Ru(001), hydrogen-presaturated Ru(001), and Ru(001)-p(1x2)-O (oxygen adatom coverage = 0.5). On clean Ru(001), the adsorption of low coverages of formamide at 80 K results in CH bond cleavage and rehybridization of the carbonyl double bond to produce an η^2 (C,O)-NH_2CO species. This species is stable to approximately 250 K at which point it decomposes to yield a mixture of coadsorbed carbon monoxide, ammonia, an NH species and hydrogen adatoms. The decomposition of NH to hydrogen and nitrogen adatoms occurs between 350 and 400 K, and the thermal desorption products are NH_3 (-315 K), H_2 (-420 K), CO (-480 K) and N_2 (-770 K). At higher formamide coverages, some formamide is adsorbed molecularly at 80 K, leading both to molecular desorption and to the formation of a new surface intermediate between 300 and 375 K that is identified tentatively as η^1(N)-NCHO. On Ru(001)- p(1x2)-O and hydrogen-presaturated Ru(001), formamide adsorbs molecularly at 80 K in an η^1(O)- NH_2CHO configuration. On the oxygen-precovered surface, the molecularly adsorbed formamide undergoes competing desorption and decomposition, resulting in the formation of an η^2(N,O)-NHCHO species (analogous to a bidentate formate) at approximately 265 K. This species decomposes near 420 K with the evolution of CO and H_2 into the gas phase. On the hydrogen precovered surface, the Η^1(O)-NH_2CHO converts below 200 K to η^2(C,O)-NH_2CHO and η^2(C,O)-NH^2CO, with some molecular desorption occurring also at high coverage. The η^2(C,O)-bonded species decompose in a manner similar to the decomposition of η^2(C,O)-NH_2CO on the clean surface, although the formation of ammonia is not detected.

Ammonia adsorbs reversibly on Ru(001) at 80 K, with negligible dissociation occurring as the surface is annealed The EEL spectra of ammonia on Ru(001) are very similar to those of ammonia on other metal surfaces. Off-specular EEL spectra of chemisorbed ammonia allow the v(Ru-NH_3) and ρ(NH_3) vibrational loss features to be resolved near 340 and 625 cm^(-1), respectively. The intense δ_g (NH_3) loss feature shifts downward in frequency with increasing ammonia coverage, from approximately 1160 cm^(-1) in the low coverage limit to 1070 cm^(-1) at saturation. In coordination compounds of ammonia, the frequency of this mode shifts downward with decreasing charge on the metal atom, and its downshift on Ru(001) can be correlated with the large work function decrease that the surface has previously been shown to undergo when ammonia is adsorbed. The EELS data are consistent with ammonia adsorption in on-top sites. Second-layer and multilayer ammonia on Ru(001) have also been characterized vibrationally, and the results are similar to those obtained for other metal surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract to Part I

The inverse problem of seismic wave attenuation is solved by an iterative back-projection method. The seismic wave quality factor, Q, can be estimated approximately by inverting the S-to-P amplitude ratios. Effects of various uncertain ties in the method are tested and the attenuation tomography is shown to be useful in solving for the spatial variations in attenuation structure and in estimating the effective seismic quality factor of attenuating anomalies.

Back-projection attenuation tomography is applied to two cases in southern California: Imperial Valley and the Coso-Indian Wells region. In the Coso-Indian Wells region, a highly attenuating body (S-wave quality factor (Q_β ≈ 30) coincides with a slow P-wave anomaly mapped by Walck and Clayton (1987). This coincidence suggests the presence of a magmatic or hydrothermal body 3 to 5 km deep in the Indian Wells region. In the Imperial Valley, slow P-wave travel-time anomalies and highly attenuating S-wave anomalies were found in the Brawley seismic zone at a depth of 8 to 12 km. The effective S-wave quality factor is very low (Q_β ≈ 20) and the P-wave velocity is 10% slower than the surrounding areas. These results suggest either magmatic or hydrothermal intrusions, or fractures at depth, possibly related to active shear in the Brawley seismic zone.

No-block inversion is a generalized tomographic method utilizing the continuous form of an inverse problem. The inverse problem of attenuation can be posed in a continuous form , and the no-block inversion technique is applied to the same data set used in the back-projection tomography. A relatively small data set with little redundancy enables us to apply both techniques to a similar degree of resolution. The results obtained by the two methods are very similar. By applying the two methods to the same data set, formal errors and resolution can be directly computed for the final model, and the objectivity of the final result can be enhanced.

Both methods of attenuation tomography are applied to a data set of local earthquakes in Kilauea, Hawaii, to solve for the attenuation structure under Kilauea and the East Rift Zone. The shallow Kilauea magma chamber, East Rift Zone and the Mauna Loa magma chamber are delineated as attenuating anomalies. Detailed inversion reveals shallow secondary magma reservoirs at Mauna Ulu and Puu Oo, the present sites of volcanic eruptions. The Hilina Fault zone is highly attenuating, dominating the attenuating anomalies at shallow depths. The magma conduit system along the summit and the East Rift Zone of Kilauea shows up as a continuous supply channel extending down to a depth of approximately 6 km. The Southwest Rift Zone, on the other hand, is not delineated by attenuating anomalies, except at a depth of 8-12 km, where an attenuating anomaly is imaged west of Puu Kou. The Ylauna Loa chamber is seated at a deeper level (about 6-10 km) than the Kilauea magma chamber. Resolution in the Mauna Loa area is not as good as in the Kilauea area, and there is a trade-off between the depth extent of the magma chamber imaged under Mauna Loa and the error that is due to poor ray coverage. Kilauea magma chamber, on the other hand, is well resolved, according to a resolution test done at the location of the magma chamber.

Abstract to Part II

Long period seismograms recorded at Pasadena of earthquakes occurring along a profile to Imperial Valley are studied in terms of source phenomena (e.g., source mechanisms and depths) versus path effects. Some of the events have known source parameters, determined by teleseismic or near-field studies, and are used as master events in a forward modeling exercise to derive the Green's functions (SH displacements at Pasadena that are due to a pure strike-slip or dip-slip mechanism) that describe the propagation effects along the profile. Both timing and waveforms of records are matched by synthetics calculated from 2-dimensional velocity models. The best 2-dimensional section begins at Imperial Valley with a thin crust containing the basin structure and thickens towards Pasadena. The detailed nature of the transition zone at the base of the crust controls the early arriving shorter periods (strong motions), while the edge of the basin controls the scattered longer period surface waves. From the waveform characteristics alone, shallow events in the basin are easily distinguished from deep events, and the amount of strike-slip versus dip-slip motion is also easily determined. Those events rupturing the sediments, such as the 1979 Imperial Valley earthquake, can be recognized easily by a late-arriving scattered Love wave that has been delayed by the very slow path across the shallow valley structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the branches of astronomy, radio astronomy is unique in that it spans the largest portion of the electromagnetic spectrum, e.g., from about 10 MHz to 300 GHz. On the other hand, due to scientific priorities as well as technological limitations, radio astronomy receivers have traditionally covered only about an octave bandwidth. This approach of "one specialized receiver for one primary science goal" is, however, not only becoming too expensive for next-generation radio telescopes comprising thousands of small antennas, but also is inadequate to answer some of the scientific questions of today which require simultaneous coverage of very large bandwidths.

This thesis presents significant improvements on the state of the art of two key receiver components in pursuit of decade-bandwidth radio astronomy: 1) reflector feed antennas; 2) low-noise amplifiers on compound-semiconductor technologies. The first part of this thesis introduces the quadruple-ridged flared horn, a flexible, dual linear-polarization reflector feed antenna that achieves 5:1-7:1 frequency bandwidths while maintaining near-constant beamwidth. The horn is unique in that it is the only wideband feed antenna suitable for radio astronomy that: 1) can be designed to have nominal 10 dB beamwidth between 30 and 150 degrees; 2) requires one single-ended 50 Ohm low-noise amplifier per polarization. Design, analysis, and measurements of several quad-ridged horns are presented to demonstrate its feasibility and flexibility.

The second part of the thesis focuses on modeling and measurements of discrete high-electron mobility transistors (HEMTs) and their applications in wideband, extremely low-noise amplifiers. The transistors and microwave monolithic integrated circuit low-noise amplifiers described herein have been fabricated on two state-of-the-art HEMT processes: 1) 35 nm indium phosphide; 2) 70 nm gallium arsenide. DC and microwave performance of transistors from both processes at room and cryogenic temperatures are included, as well as first-reported measurements of detailed noise characterization of the sub-micron HEMTs at both temperatures. Design and measurements of two low-noise amplifiers covering 1--20 and 8—50 GHz fabricated on both processes are also provided, which show that the 1--20 GHz amplifier improves the state of the art in cryogenic noise and bandwidth, while the 8--50 GHz amplifier achieves noise performance only slightly worse than the best published results but does so with nearly a decade bandwidth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic structure above and below the core-mantle boundary (CMB) has been studied through use of travel time and waveform analyses of several different seismic wave groups. Anomalous systematic trends in observables document mantle heterogeneity on both large and small scales. Analog and digital data has been utilized, and in many cases the analog data has been optically scanned and digitized prior to analysis.

Differential travel times of S - SKS are shown to be an excellent diagnostic of anomalous lower mantle shear velocity (V s) structure. Wavepath geometries beneath the central Pacific exhibit large S- SKS travel time residuals (up to 10 sec), and are consistent with a large scale 0(1000 km) slower than average V_s region (≥3%). S - SKS times for paths traversing this region exhibit smaller scale patterns and trends 0(100 km) indicating V_s perturbations on many scale lengths. These times are compared to predictions of three tomographically derived aspherical models: MDLSH of Tanimoto [1990], model SH12_WM13 of Suet al. [1992], and model SH.10c.17 of Masters et al. [1992]. Qualitative agreement between the tomographic model predictions and observations is encouraging, varying from fair to good. However, inconsistencies are present and suggest anomalies in the lower mantle of scale length smaller than the present 2000+ km scale resolution of tomographic models. 2-D wave propagation experiments show the importance of inhomogeneous raypaths when considering lateral heterogeneities in the lowermost mantle.

A dataset of waveforms and differential travel times of S, ScS, and the arrival from the D" layer, Scd, provides evidence for a laterally varying V_s velocity discontinuity at the base of the mantle. Two different localized D" regions beneath the central Pacific have been investigated. Predictions from a model having a V_s discontinuity 180 km above the CMB agree well with observations for an eastern mid-Pacific CMB region. This thickness differs from V_s discontinuity thicknesses found in other regions, such as a localized region beneath the western Pacific, which average near 280 km. The "sharpness" of the V_s jump at the top of D", i.e., the depth range over which the V_s increase occurs, is not resolved by our data, and our data can in fact may be modeled equally well by a lower mantle with the increase in V_s at the top of D" occurring over a 100 krn depth range. It is difficult at present to correlate D" thicknesses from this study to overall lower mantle heterogeneity, due to uncertainties in the 3-D models, as well as poor coverage in maps of D" discontinuity thicknesses.

P-wave velocity structure (V_p) at the base of the mantle is explored using the seismic phases SKS and SPdKS. SPdKS is formed when SKS waves at distances around 107° are incident upon the CMB with a slowness that allows for coupling with diffracted P-waves at the base of the mantle. The P-wave diffraction occurs at both the SKS entrance and exit locations of the outer core. SP_dKS arrives slightly later in time than SKS, having a wave path through the mantle and core very close to SKS. The difference time between SKS and SP_dKS strongly depends on V_p at the base of the mantle near SK Score entrance and exit points. Observations from deep focus Fiji-Tonga events recorded by North American stations, and South American events recorded by European and Eurasian stations exhibit anomalously large SP_dKS - SKS difference times. SKS and the later arriving SP_dKS phase are separated by several seconds more than predictions made by 1-D reference models, such as the global average PREM [Dziewonski and Anderson, 1981] model. Models having a pronounced low-velocity zone (5%) in V_p in the bottom 50-100 km of the mantle predict the size of the observed SP_dK S-SKS anomalies. Raypath perturbations from lower mantle V_s structure may also be contributing to the observed anomalies.

Outer core structure is investigated using the family of SmKS (m=2,3,4) seismic waves. SmKS are waves that travel as S-waves in the mantle, P-waves in the core, and reflect (m-1) times on the underside of the CMB, and are well-suited for constraining outermost core V_p structure. This is due to closeness of the mantle paths and also the shallow depth range these waves travel in the outermost core. S3KS - S2KS and S4KS - S3KS differential travel times were measured using the cross-correlation method and compared to those from reflectivity synthetics created from core models of past studies. High quality recordings from a deep focus Java Sea event which sample the outer core beneath the northern Pacific, the Arctic, and northwestern North America (spanning 1/8th of the core's surface area), have SmKS wavepaths that traverse regions where lower mantle heterogeneity is pre- dieted small, and are well-modeled by the PREM core model, with possibly a small V_p decrease (1.5%) in the outermost 50 km of the core. Such a reduction implies chemical stratification in this 50 km zone, though this model feature is not uniquely resolved. Data having wave paths through areas of known D" heterogeneity (±2% and greater), such as the source-side of SmKS lower mantle paths from Fiji-Tonga to Eurasia and Africa, exhibit systematic SmKS differential time anomalies of up to several seconds. 2-D wave propagation experiments demonstrate how large scale lower mantle velocity perturbations can explain long wavelength behavior of such anomalous SmKS times. When improperly accounted for, lower mantle heterogeneity maps directly into core structure. Raypaths departing from homogeneity play an important role in producing SmKS anomalies. The existence of outermost core heterogeneity is difficult to resolve at present due to uncertainties in global lower mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult due to the same uncertainties. Restricting study to higher multiples of SmKS (m=2,3,4) can help reduce the affect of mantle heterogeneity due to the closeness of the mantle legs of the wavepaths. SmKS waves are ideal in providing additional information on the details of lower mantle heterogeneity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In noncooperative cost sharing games, individually strategic agents choose resources based on how the welfare (cost or revenue) generated at each resource (which depends on the set of agents that choose the resource) is distributed. The focus is on finding distribution rules that lead to stable allocations, which is formalized by the concept of Nash equilibrium, e.g., Shapley value (budget-balanced) and marginal contribution (not budget-balanced) rules.

Recent work that seeks to characterize the space of all such rules shows that the only budget-balanced distribution rules that guarantee equilibrium existence in all welfare sharing games are generalized weighted Shapley values (GWSVs), by exhibiting a specific 'worst-case' welfare function which requires that GWSV rules be used. Our work provides an exact characterization of the space of distribution rules (not necessarily budget-balanced) for any specific local welfare functions remains, for a general class of scalable and separable games with well-known applications, e.g., facility location, routing, network formation, and coverage games.

We show that all games conditioned on any fixed local welfare functions possess an equilibrium if and only if the distribution rules are equivalent to GWSV rules on some 'ground' welfare functions. Therefore, it is neither the existence of some worst-case welfare function, nor the restriction of budget-balance, which limits the design to GWSVs. Also, in order to guarantee equilibrium existence, it is necessary to work within the class of potential games, since GWSVs result in (weighted) potential games.

We also provide an alternative characterization—all games conditioned on any fixed local welfare functions possess an equilibrium if and only if the distribution rules are equivalent to generalized weighted marginal contribution (GWMC) rules on some 'ground' welfare functions. This result is due to a deeper fundamental connection between Shapley values and marginal contributions that our proofs expose—they are equivalent given a transformation connecting their ground welfare functions. (This connection leads to novel closed-form expressions for the GWSV potential function.) Since GWMCs are more tractable than GWSVs, a designer can tradeoff budget-balance with computational tractability in deciding which rule to implement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of SO_2 with γ - Al_2O_3 and the deposition of H_2 permselective SiO_2 films have been investigated. The adsorption and oxidative adsorption of SO_2 on γ - Al_2O_3 have been examined at temperatures 500-700°C by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). At temperatures above 500°C most of SO_2 adsorbed on the strong sites on alumina. The adsorbed SO_2 species was characterized by an IR band at 1065 cm^(-1). The equilibrium coverage and initial rate of adsorption decreased with temperature suggesting a two-step adsorption. When γ - Al_2O_3 was contacted with a mixture of SO_2 and O_2, adsorption of SO_2 and oxidation of the adsorbed SO_2 to a surface sulfate characterized by broad IR bands at 1070 cm^(-1), 1390 cm^(-1) took place. The results of a series of TGA experiments under different atmospheres strongly suggest that surface SO_2 and surface sulfate involve the same active sites such that SO_2 adsorption is inhibited by already formed sulfate. The results also indicate a broad range of site strengths.

The desorption of adsorbed SO_2 and the reductive desorption of oxidatively adsorbed SO_2 have been investigated by microreactor experiments and thermogravimetric analysis (TGA). Temperature programmed reduction (TPR) of adsorbed SO_2 showed that SO_2 was desorbed without significant reaction with H_2 when H_2 concentration was low while considerable reaction occurred when 100% H_2 was used. SO_2 adsorbed on the strong sites on alumina was reduced to sulfur and H_2S. The isothermal reduction experiments of oxidatively adsorbed SO_2 reveal that the rate of reduction is very slow below 550°C even with 100% H_2. The reduction product is mainly composed of SO_2. TPR experiments of oxidatively adsorbed SO_2 showed that H_2S arose from a sulfate strongly chemisorbed on the surface.

Films of amorphous SiO_2 were deposited within the walls of porous Vycor tubes by SiH_4 oxidation in an opposing reactants geometry : SiH_4 was passed inside the tube while O_2 was passed outside the tube. The two reactants diffused opposite to each other and reacted within a narrow front inside the tube wall to form a thin SiO_2 film. Once the pores were plugged the reactants could not reach each other and the reaction stopped. At 450°C and 0.1 and 0.33 atm of SiH_4 and O_2, the reaction was complete within 15 minutes. The thickness of the SiO_2 film was estimated to be about 0.1 µm. Measurements of H_2 and N_2 permeation rates showed that the SiO_2 film was highly selective to H_2 permeation. The H_2:N_2 flux at 450°C varied between 2000-3000.

Thin SiO_2 films were heat treated in different gas mixtures to determine their stability in functioning as high-temperature hydrogen-permselective membranes. The films were heat-treated at 450-700°C in dry N_2, dry O_2, N_2-H_2O, and O_2-H_2O mixtures. The permeation rates of H_2 and N_2 changed depending on the original conditions of film formation as well as on the heat treatment. Heating in dry N_2 slowly reduced the permeation rates of both H_2 and N_2. Heating in a N_2-H_2O atmosphere led to a steeper decline of H_2 permeability. But the permeation rate of N_2 increased or decreased according to whether the film deposition had been carried out in the absence or presence of H_2O vapor, respectively. Thermal treatment in O_2 caused rapid decline of the permeation rates of H_2 and N_2 in films that were deposited under dry conditions. The decline was moderate in films deposited under wet conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this dissertation includes fundamental investigations into three surface processes, namely inorganic film growth, water-induced oxidation, and organic functionalization/passivation, on the GaP and GaAs(001) surfaces. The techniques used to carry out this work include scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. Atomic structure, electronic structure, reaction mechanisms, and energetics related to these surface processes are discussed at atomic or molecular levels.

First, we investigate epitaxial Zn3P2 films grown on the Ga-rich GaAs(001)(6×6) surface. The film growth mechanism, electronic properties, and atomic structure of the Zn3P2/GaAs(001) system are discussed based on experimental and theoretical observations. We discover that a P-rich amorphous layer covers the crystalline Zn3P2 film during and after growth. We also propose more accurate picture of the GaP interfacial layer between Zn3P2 and GaAs, based on the atomic structure, chemical bonding, band diagram, and P-replacement energetics, than was previously anticipated.

Second, DFT calculations are carried out in order to understand water-induced oxidation mechanisms on the Ga-rich GaP(001)(2×4) surface. Structural and energetic information of every step in the gaseous water-induced GaP oxidation reactions are elucidated at the atomic level in great detail. We explore all reasonable ground states involved in most of the possible adsorption and decomposition pathways. We also investigate structures and energies of the transition states in the first hydrogen dissociation of a water molecule on the (2×4) surface.

Finally, adsorption structures and thermal decomposition reactions of 1-propanethiol on the Ga-rich GaP(001)(2×4) surface are investigated using high resolution STM, XPS, and DFT simulations. We elucidate adsorption locations and their associated atomic structures of a single 1-propanethiol molecule on the (2×4) surface as a function of annealing temperature. DFT calculations are carried out to optimize ground state structures and search transition states. XPS is used to investigate variations of the chemical bonding nature and coverage of the adsorbate species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents two different forms of the Born approximations for acoustic and elastic wavefields and discusses their application to the inversion of seismic data. The Born approximation is valid for small amplitude heterogeneities superimposed over a slowly varying background. The first method is related to frequency-wavenumber migration methods. It is shown to properly recover two independent acoustic parameters within the bandpass of the source time function of the experiment for contrasts of about 5 percent from data generated using an exact theory for flat interfaces. The independent determination of two parameters is shown to depend on the angle coverage of the medium. For surface data, the impedance profile is well recovered.

The second method explored is mathematically similar to iterative tomographic methods recently introduced in the geophysical literature. Its basis is an integral relation between the scattered wavefield and the medium parameters obtained after applying a far-field approximation to the first-order Born approximation. The Davidon-Fletcher-Powell algorithm is used since it converges faster than the steepest descent method. It consists essentially of successive backprojections of the recorded wavefield, with angular and propagation weighing coefficients for density and bulk modulus. After each backprojection, the forward problem is computed and the residual evaluated. Each backprojection is similar to a before-stack Kirchhoff migration and is therefore readily applicable to seismic data. Several examples of reconstruction for simple point scatterer models are performed. Recovery of the amplitudes of the anomalies are improved with successive iterations. Iterations also improve the sharpness of the images.

The elastic Born approximation, with the addition of a far-field approximation is shown to correspond physically to a sum of WKBJ-asymptotic scattered rays. Four types of scattered rays enter in the sum, corresponding to P-P, P-S, S-P and S-S pairs of incident-scattered rays. Incident rays propagate in the background medium, interacting only once with the scatterers. Scattered rays propagate as if in the background medium, with no interaction with the scatterers. An example of P-wave impedance inversion is performed on a VSP data set consisting of three offsets recorded in two wells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic reflection methods have been extensively used to probe the Earth's crust and suggest the nature of its formative processes. The analysis of multi-offset seismic reflection data extends the technique from a reconnaissance method to a powerful scientific tool that can be applied to test specific hypotheses. The treatment of reflections at multiple offsets becomes tractable if the assumptions of high-frequency rays are valid for the problem being considered. Their validity can be tested by applying the methods of analysis to full wave synthetics.

Three studies illustrate the application of these principles to investigations of the nature of the crust in southern California. A survey shot by the COCORP consortium in 1977 across the San Andreas fault near Parkfield revealed events in the record sections whose arrival time decreased with offset. The reflectors generating these events are imaged using a multi-offset three-dimensional Kirchhoff migration. Migrations of full wave acoustic synthetics having the same limitations in geometric coverage as the field survey demonstrate the utility of this back projection process for imaging. The migrated depth sections show the locations of the major physical boundaries of the San Andreas fault zone. The zone is bounded on the southwest by a near-vertical fault juxtaposing a Tertiary sedimentary section against uplifted crystalline rocks of the fault zone block. On the northeast, the fault zone is bounded by a fault dipping into the San Andreas, which includes slices of serpentinized ultramafics, intersecting it at 3 km depth. These interpretations can be made despite complications introduced by lateral heterogeneities.

In 1985 the Calcrust consortium designed a survey in the eastern Mojave desert to image structures in both the shallow and the deep crust. Preliminary field experiments showed that the major geophysical acquisition problem to be solved was the poor penetration of seismic energy through a low-velocity surface layer. Its effects could be mitigated through special acquisition and processing techniques. Data obtained from industry showed that quality data could be obtained from areas having a deeper, older sedimentary cover, causing a re-definition of the geologic objectives. Long offset stationary arrays were designed to provide reversed, wider angle coverage of the deep crust over parts of the survey. The preliminary field tests and constant monitoring of data quality and parameter adjustment allowed 108 km of excellent crustal data to be obtained.

This dataset, along with two others from the central and western Mojave, was used to constrain rock properties and the physical condition of the crust. The multi-offset analysis proceeded in two steps. First, an increase in reflection peak frequency with offset is indicative of a thinly layered reflector. The thickness and velocity contrast of the layering can be calculated from the spectral dispersion, to discriminate between structures resulting from broad scale or local effects. Second, the amplitude effects at different offsets of P-P scattering from weak elastic heterogeneities indicate whether the signs of the changes in density, rigidity, and Lame's parameter at the reflector agree or are opposed. The effects of reflection generation and propagation in a heterogeneous, anisotropic crust were contained by the design of the experiment and the simplicity of the observed amplitude and frequency trends. Multi-offset spectra and amplitude trend stacks of the three Mojave Desert datasets suggest that the most reflective structures in the middle crust are strong Poisson's ratio (σ) contrasts. Porous zones or the juxtaposition of units of mutually distant origin are indicated. Heterogeneities in σ increase towards the top of a basal crustal zone at ~22 km depth. The transition to the basal zone and to the mantle include increases in σ. The Moho itself includes ~400 m layering having a velocity higher than that of the uppermost mantle. The Moho maintains the same configuration across the Mojave despite 5 km of crustal thinning near the Colorado River. This indicates that Miocene extension there either thinned just the basal zone, or that the basal zone developed regionally after the extensional event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis I apply paleomagnetic techniques to paleoseismological problems. I investigate the use of secular-variation magnetostratigraphy to date prehistoric earthquakes; I identify liquefaction remanent magnetization (LRM), and I quantify coseismic deformation within a fault zone by measuring the rotation of paleomagnetic vectors.

In Chapter 2 I construct a secular-variation reference curve for southern California. For this curve I measure three new well-constrained paleomagnetic directions: two from the Pallett Creek paleoseismological site at A.D. 1397-1480 and A.D. 1465-1495, and one from Panum Crater at A.D. 1325-1365. To these three directions I add the best nine data points from the Sternberg secular-variation curve, five data points from Champion, and one point from the A.D. 1480 eruption of Mt. St. Helens. I derive the error due to the non-dipole field that is added to these data by the geographical correction to southern California. Combining these yields a secular variation curve for southern California covering the period A.D. 670 to 1910, with the best coverage in the range A.D. 1064 to 1505.

In Chapter 3 I apply this curve to a problem in southern California. Two paleoseismological sites in the Salton trough of southern California have sediments deposited by prehistoric Lake Cahuilla. At the Salt Creek site I sampled sediments from three different lakes, and at the Indio site I sampled sediments from four different lakes. Based upon the coinciding paleomagnetic directions I correlate the oldest lake sampled at Salt Creek with the oldest lake sampled at Indio. Furthermore, the penultimate lake at Indio does not appear to be present at Salt Creek. Using the secular variation curve I can assign the lakes at Salt Creek to broad age ranges of A.D. 800 to 1100, A.D. 1100 to 1300, and A.D. 1300 to 1500. This example demonstrates the large uncertainties in the secular variation curve and the need to construct curves from a limited geographical area.

Chapter 4 demonstrates that seismically induced liquefaction can cause resetting of detrital remanent magnetization and acquisition of a liquefaction remanent magnetization (LRM). I sampled three different liquefaction features, a sandbody formed in the Elsinore fault zone, diapirs from sediments of Mono Lake, and a sandblow in these same sediments. In every case the liquefaction features showed stable magnetization despite substantial physical disruption. In addition, in the case of the sandblow and the sandbody, the intensity of the natural remanent magnetization increased by up to an order of magnitude.

In Chapter 5 I apply paleomagnetics to measuring the tectonic rotations in a 52 meter long transect across the San Andreas fault zone at the Pallett Creek paleoseismological site. This site has presented a significant problem because the brittle long-term average slip-rate across the fault is significantly less than the slip-rate from other nearby sites. I find sections adjacent to the fault with tectonic rotations of up to 30°. If interpreted as block rotations, the non-brittle offset was 14.0+2.8, -2.1 meters in the last three earthquakes and 8.5+1.0, -0.9 meters in the last two. Combined with the brittle offset in these events, the last three events all had about 6 meters of total fault offset, even though the intervals between them were markedly different.

In Appendix 1 I present a detailed description of my standard sampling and demagnetization procedure.

In Appendix 2 I present a detailed discussion of the study at Panum Crater that yielded the well-constrained paleomagnetic direction for use in developing secular variation curve in Chapter 2. In addition, from sampling two distinctly different clast types in a block-and-ash flow deposit from Panum Crater, I find that this flow had a complex emplacement and cooling history. Angular, glassy "lithic" blocks were emplaced at temperatures above 600° C. Some of these had cooled nearly completely, whereas others had cooled only to 450° C, when settling in the flow rotated the blocks slightly. The partially cooled blocks then finished cooling without further settling. Highly vesicular, breadcrusted pumiceous clasts had not yet cooled to 600° C at the time of these rotations, because they show a stable, well clustered, unidirectional magnetic vector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study was made of the flocculation of dispersed E. coli bacterial cells by the cationic polymer polyethyleneimine (PEI). The three objectives of this study were to determine the primary mechanism involved in the flocculation of a colloid with an oppositely charged polymer, to determine quantitative correlations between four commonly-used measurements of the extent of flocculation, and to record the effect of varying selected system parameters on the degree of flocculation. The quantitative relationships derived for the four measurements of the extent of flocculation should be of direct assistance to the sanitary engineer in evaluating the effectiveness of specific coagulation processes.

A review of prior statistical mechanical treatments of absorbed polymer configuration revealed that at low degrees of surface site coverage, an oppositely- charged polymer molecule is strongly adsorbed to the colloidal surface, with only short loops or end sequences extending into the solution phase. Even for high molecular weight PEI species, these extensions from the surface are theorized to be less than 50 Å in length. Although the radii of gyration of the five PEI species investigated were found to be large enough to form interparticle bridges, the low surface site coverage at optimum flocculation doses indicates that the predominant mechanism of flocculation is adsorption coagulation.

The effectiveness of the high-molecular weight PEI species 1n producing rapid flocculation at small doses is attributed to the formation of a charge mosaic on the oppositely-charged E. coli surfaces. The large adsorbed PEI molecules not only neutralize the surface charge at the adsorption sites, but also cause charge reversal with excess cationic segments. The alignment of these positive surface patches with negative patches on approaching cells results in strong electrostatic attraction in addition to a reduction of the double-layer interaction energies. The comparative ineffectiveness of low-molecular weight PEI species in producing E. coli flocculation is caused by the size of the individual molecules, which is insufficient to both neutralize and reverse the negative E.coli surface charge. Consequently, coagulation produced by low molecular weight species is attributed solely to the reduction of double-layer interaction energies via adsorption.

Electrophoretic mobility experiments supported the above conclusions, since only the high-molecular weight species were able to reverse the mobility of the E. coli cells. In addition, electron microscope examination of the seam of agglutination between E. coli cells flocculation by PEI revealed tightly- bound cells, with intercellular separation distances of less than 100-200 Å in most instances. This intercellular separation is partially due to cell shrinkage in preparation of the electron micrographs.

The extent of flocculation was measured as a function of PEl molecular weight, PEl dose, and the intensity of reactor chamber mixing. Neither the intensity of mixing, within the common treatment practice limits, nor the time of mixing for up to four hours appeared to play any significant role in either the size or number of E.coli aggregates formed. The extent of flocculation was highly molecular weight dependent: the high-molecular-weight PEl species produce the larger aggregates, the greater turbidity reductions, and the higher filtration flow rates. The PEl dose required for optimum flocculation decreased as the species molecular weight increased. At large doses of high-molecular-weight species, redispersion of the macroflocs occurred, caused by excess adsorption of cationic molecules. The excess adsorption reversed the surface charge on the E.coli cells, as recorded by electrophoretic mobility measurements.

Successful quantitative comparisons were made between changes in suspension turbidity with flocculation and corresponding changes in aggregate size distribution. E. coli aggregates were treated as coalesced spheres, with Mie scattering coefficients determined for spheres in the anomalous diffraction regime. Good quantitative comparisons were also found to exist between the reduction in refiltration time and the reduction of the total colloid surface area caused by flocculation. As with turbidity measurements, a coalesced sphere model was used since the equivalent spherical volume is the only information available from the Coulter particle counter. However, the coalesced sphere model was not applicable to electrophoretic mobility measurements. The aggregates produced at each PEl dose moved at approximately the same vlocity, almost independently of particle size.

PEl was found to be an effective flocculant of E. coli cells at weight ratios of 1 mg PEl: 100 mg E. coli. While PEl itself is toxic to E.coli at these levels, similar cationic polymers could be effectively applied to water and wastewater treatment facilities to enhance sedimentation and filtration characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functionalization of silicon surfaces with molecular catalysts for proton reduction is an important part of the development of a solar-powered, water-splitting device for solar fuel formation. The covalent attachment of these catalysts to silicon without damaging the underlying electronic properties of silicon that make it a good photocathode has proven difficult. We report the formation of mixed monolayer-functionalized surfaces that incor- porate both methyl and vinylferrocenyl or vinylbipyridyl (vbpy) moieties. The silicon was functionalized using reaction conditions analogous to those of hydrosilylation, but instead of a H-terminated Si surface, a chlorine-terminated Si precursor surface was used to produce the linked vinyl-modified functional group. The functionalized surfaces were characterized by time-resolved photoconductivity decay, X-ray photoelectron spectroscopy (XPS), electro- chemical, and photoelectrochemical measurements. The functionalized Si surfaces were well passivated, exhibited high surface coverage and few remaining reactive Si atop sites, had a very low surface recombination velocity, and displayed little initial surface oxidation. The surfaces were stable toward atmospheric and electrochemical oxidation. The surface coverage of ferrocene or bipyridine was controllably varied from 0 up to 30% of a monolayer without loss of the underlying electronic properties of the silicon. Interfacial charge transfer to the attached ferrocene group was relatively rapid, and a photovoltage of 0.4 V was generated upon illumination of functionalized n-type silicon surfaces in CH3CN. The immobilized bipyridine ligands bound transition metal ions, and thus enabled the assembly of metal complexes on the silicon surface. XPS studies demonstrated that [Cp∗Rh(vbpy)Cl]Cl, [Cp∗Ir(vbpy)Cl]Cl, and Ru(acac)2vbpy were assembled on the surface. For the surface prepared with iridium, x-ray absorption spectroscopy at the Ir LIII edge showed an edge energy and post-edge features virtually identical to a powder sample of [Cp∗Ir(bipy)Cl]Cl (bipy is 2,2 ́-bipyridyl). Electrochemical studies on these surfaces confirmed that the assembled complexes were electrochemically active.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial probabilities of activated, dissociative chemisorption of methane and ethane on Pt(110)-(1 x 2) have been measured. The surface temperature was varied from 450 to 900 K with the reactant gas temperature constant at 300 K. Under these conditions, we probe the kinetics of dissociation via trapping-mediated (as opposed to 'direct') mechanism. It was found that the probabilities of dissociation of both methane and ethane were strong functions of the surface temperature with an apparent activation energies of 14.4 kcal/mol for methane and 2.8 kcal/mol for ethane, which implys that the methane and ethane molecules have fully accommodated to the surface temperature. Kinetic isotope effects were observed for both reactions, indicating that the C-H bond cleavage was involved in the rate-limiting step. A mechanistic model based on the trapping-mediated mechanism is used to explain the observed kinetic behavior. The activation energies for C-H bond dissociation of the thermally accommodated methane and ethane on the surface extracted from the model are 18.4 and 10.3 kcal/mol, respectively.

The studies of the catalytic decomposition of formic acid on the Ru(001) surface with thermal desorption mass spectrometry following the adsorption of DCOOH and HCOOH on the surface at 130 and 310 K are described. Formic acid (DCOOH) chemisorbs dissociatively on the surface via both the cleavage of its O-H bond to form a formate and a hydrogen adatom, and the cleavage of its C-O bond to form a carbon monoxide, a deuterium adatom and an hydroxyl (OH). The former is the predominant reaction. The rate of desorption of carbon dioxide is a direct measure of the kinetics of decomposition of the surface formate. It is characterized by a kinetic isotope effect, an increasingly narrow FWHM, and an upward shift in peak temperature with Ɵ_T, the coverage of the dissociatively adsorbed formic acid. The FWHM and the peak temperature change from 18 K and 326 K at Ɵ_T = 0.04 to 8 K and 395 K at Ɵ_T = 0.89. The increase in the apparent activation energy of the C-D bond cleavage is largely a result of self-poisoning by the formate, the presence of which on the surface alters the electronic properties of the surface such that the activation energy of the decomposition of formate is increased. The variation of the activation energy for carbon dioxide formation with Ɵ_T accounts for the observed sharp carbon dioxide peak. The coverage of surface formate can be adjusted over a relatively wide range so that the activation energy for C-D bond cleavage in the case of DCOOH can be adjusted to be below, approximately equal to, or well above the activation energy for the recombinative desorption of the deuterium adatoms. Accordingly, the desorption of deuterium was observed to be governed completely by the desorption kinetics of the deuterium adatoms at low Ɵ_T, jointly by the kinetics of deuterium desorption and C-D bond cleavage at intermediate Ɵ_T, and solely by the kinetics of C-D bond cleavage at high Ɵ_T. The overall branching ratio of the formate to carbon dioxide and carbon monoxide is approximately unity, regardless the initial coverage Ɵ_T, even though the activation energy for the production of carbon dioxide varies with Ɵ_T. The desorption of water, which implies C-O bond cleavage of the formate, appears at approximately the same temperature as that of carbon dioxide. These observations suggest that the cleavage of the C-D bond and that of the C-O bond of two surface formates are coupled, possibly via the formation of a short-lived surface complex that is the precursor to to the decomposition.

The measurement of steady-state rate is demonstrated here to be valuable in determining kinetics associated with short-lived, molecularly adsorbed precursor to further reactions on the surface, by determining the kinetic parameters of the molecular precursor of formaldehyde to its dissociation on the Pt(110)-(1 x 2) surface.

Overlayers of nitrogen adatoms on Ru(001) have been characterized both by thermal desorption mass spectrometry and low-energy electron diffraction, as well as chemically via the postadsorption and desorption of ammonia and carbon monoxide.

The nitrogen-adatom overlayer was prepared by decomposing ammonia thermally on the surface at a pressure of 2.8 x 10^(-6) Torr and a temperature of 480 K. The saturated overlayer prepared under these conditions has associated with it a (√247/10 x √247/10)R22.7° LEED pattern, has two peaks in its thermal desorption spectrum, and has a fractional surface coverage of 0.40. Annealing the overlayer to approximately 535 K results in a rather sharp (√3 x √3)R30° LEED pattern with an associated fractional surface coverage of one-third. Annealing the overlayer further to 620 K results in the disappearance of the low-temperature thermal desorption peak and the appearance of a rather fuzzy p(2x2) LEED pattern with an associated fractional surface coverage of approximately one-fourth. In the low coverage limit, the presence of the (√3 x √3)R30° N overlayer alters the surface in such a way that the binding energy of ammonia is increased by 20% relative to the clean surface, whereas that of carbon monoxide is reduced by 15%.

A general methodology for the indirect relative determination of the absolute fractional surface coverages has been developed and was utilized to determine the saturation fractional coverage of hydrogen on Ru(001). Formaldehyde was employed as a bridge to lead us from the known reference point of the saturation fractional coverage of carbon monoxide to unknown reference point of the fractional coverage of hydrogen on Ru(001), which is then used to determine accurately the saturation fractional coverage of hydrogen. We find that ƟSAT/H = 1.02 (±0.05), i.e., the surface stoichiometry is Ru : H = 1 : 1. The relative nature of the method, which cancels systematic errors, together with the utilization of a glass envelope around the mass spectrometer, which reduces spurious contributions in the thermal desorption spectra, results in high accuracy in the determination of absolute fractional coverages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution orbital and in situ observations acquired of the Martian surface during the past two decades provide the opportunity to study the rock record of Mars at an unprecedented level of detail. This dissertation consists of four studies whose common goal is to establish new standards for the quantitative analysis of visible and near-infrared data from the surface of Mars. Through the compilation of global image inventories, application of stratigraphic and sedimentologic statistical methods, and use of laboratory analogs, this dissertation provides insight into the history of past depositional and diagenetic processes on Mars. The first study presents a global inventory of stratified deposits observed in images from the High Resolution Image Science Experiment (HiRISE) camera on-board the Mars Reconnaissance Orbiter. This work uses the widespread coverage of high-resolution orbital images to make global-scale observations about the processes controlling sediment transport and deposition on Mars. The next chapter presents a study of bed thickness distributions in Martian sedimentary deposits, showing how statistical methods can be used to establish quantitative criteria for evaluating the depositional history of stratified deposits observed in orbital images. The third study tests the ability of spectral mixing models to obtain quantitative mineral abundances from near-infrared reflectance spectra of clay and sulfate mixtures in the laboratory for application to the analysis of orbital spectra of sedimentary deposits on Mars. The final study employs a statistical analysis of the size, shape, and distribution of nodules observed by the Mars Science Laboratory Curiosity rover team in the Sheepbed mudstone at Yellowknife Bay in Gale crater. This analysis is used to evaluate hypotheses for nodule formation and to gain insight into the diagenetic history of an ancient habitable environment on Mars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Advanced LIGO and Virgo experiments are poised to detect gravitational waves (GWs) directly for the first time this decade. The ultimate prize will be joint observation of a compact binary merger in both gravitational and electromagnetic channels. However, GW sky locations that are uncertain by hundreds of square degrees will pose a challenge. I describe a real-time detection pipeline and a rapid Bayesian parameter estimation code that will make it possible to search promptly for optical counterparts in Advanced LIGO. Having analyzed a comprehensive population of simulated GW sources, we describe the sky localization accuracy that the GW detector network will achieve as each detector comes online and progresses toward design sensitivity. Next, in preparation for the optical search with the intermediate Palomar Transient Factory (iPTF), we have developed a unique capability to detect optical afterglows of gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM). Its comparable error regions offer a close parallel to the Advanced LIGO problem, but Fermi's unique access to MeV-GeV photons and its near all-sky coverage may allow us to look at optical afterglows in a relatively unexplored part of the GRB parameter space. We present the discovery and broadband follow-up observations (X-ray, UV, optical, millimeter, and radio) of eight GBM-IPTF afterglows. Two of the bursts (GRB 130702A / iPTF13bxl and GRB 140606B / iPTF14bfu) are at low redshift (z=0.145 and z = 0.384, respectively), are sub-luminous with respect to "standard" cosmological bursts, and have spectroscopically confirmed broad-line type Ic supernovae. These two bursts are possibly consistent with mildly relativistic shocks breaking out from the progenitor envelopes rather than the standard mechanism of internal shocks within an ultra-relativistic jet. On a technical level, the GBM--IPTF effort is a prototype for locating and observing optical counterparts of GW events in Advanced LIGO with the Zwicky Transient Facility.