13 resultados para Coordinates.

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of the Galactic center region black hole candidate 1E 1740.7-2942 have been carried out using the Caltech Gamma-Ray Imaging Payload (GRIP), the Röntgensatellit (ROSAT) and the Very Large Array (VLA). These multiwavelength observations have helped to establish the association between a bright emitter of hard X-rays and soft γ-rays, the compact core of a double radio jet source, and the X-ray source, 1E 1740.7-2942. They have also provided information on the X-ray and hard X-ray spectrum.

The Galactic center region was observed by GRIP during balloon flights from Alice Springs, NT, Australia on 1988 April 12 and 1989 April 3. These observations revealed that 1E 1740.7-2942 was the strongest source of hard X-rays within ~10° of the Galactic center. The source spectrum from each flight is well fit by a single power law in the energy range 35-200 keV. The best-fit photon indices and 100 keV normalizations are: γ = (2.05 ± 0.15) and K_(100) = (8.5 ± 0.5) x 10^(-5) cm^(-2) s^(-1) keV^(-1) and γ = (2.2 ± 0.3) and K_(100) = (7.0 ± 0.7) x 10^(-5) cm^(-2) s^(-1) keV^(-1) for the 1988 and 1989 observations respectively. No flux above 200 keV was detected during either observation. These values are consistent with a constant spectrum and indicate that 1E 1740.7-2942 was in its normal hard X-ray emission state. A search on one hour time scales showed no evidence for variability.

The ROSAT HRI observed 1E 1740.7-2942 during the period 1991 March 20-24. An improved source location has been derived from this observation. The best fit coordinates (J2000) are: Right Ascension = 17^h43^m54^s.9, Declination = -29°44'45".3, with a 90% confidence error circle of radius 8".5. The PSPC observation was split between periods from 1992 September 28- October 4 and 1993 March 23-28. A thermal bremsstrahlung model fit to the data yields a column density of N_H = 1.12^(+1.51)_(0.18) x cm^(-2) , consistent with earlier X- ray measurements.

We observed the region of the Einstein IPC error circle for 1E 1740.7-2942 with the VLA at 1.5 and 4.9 GHz on 1989 March 2. The 4.9 GHz observation revealed two sources. Source 'A', which is the core of a double aligned radio jet source (Mirabel et al. 1992), lies within our ROSAT error circle, further strengthening its identification with 1E 1740.7-2942.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis covers a range of topics in numerical and analytical relativity, centered around introducing tools and methodologies for the study of dynamical spacetimes. The scope of the studies is limited to classical (as opposed to quantum) vacuum spacetimes described by Einstein's general theory of relativity. The numerical works presented here are carried out within the Spectral Einstein Code (SpEC) infrastructure, while analytical calculations extensively utilize Wolfram's Mathematica program.

We begin by examining highly dynamical spacetimes such as binary black hole mergers, which can be investigated using numerical simulations. However, there are difficulties in interpreting the output of such simulations. One difficulty stems from the lack of a canonical coordinate system (henceforth referred to as gauge freedom) and tetrad, against which quantities such as Newman-Penrose Psi_4 (usually interpreted as the gravitational wave part of curvature) should be measured. We tackle this problem in Chapter 2 by introducing a set of geometrically motivated coordinates that are independent of the simulation gauge choice, as well as a quasi-Kinnersley tetrad, also invariant under gauge changes in addition to being optimally suited to the task of gravitational wave extraction.

Another difficulty arises from the need to condense the overwhelming amount of data generated by the numerical simulations. In order to extract physical information in a succinct and transparent manner, one may define a version of gravitational field lines and field strength using spatial projections of the Weyl curvature tensor. Introduction, investigation and utilization of these quantities will constitute the main content in Chapters 3 through 6.

For the last two chapters, we turn to the analytical study of a simpler dynamical spacetime, namely a perturbed Kerr black hole. We will introduce in Chapter 7 a new analytical approximation to the quasi-normal mode (QNM) frequencies, and relate various properties of these modes to wave packets traveling on unstable photon orbits around the black hole. In Chapter 8, we study a bifurcation in the QNM spectrum as the spin of the black hole a approaches extremality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of electron temperature on the radiation fields and the resistance of a short dipole antenna embedded in a uniaxial plasma have been studied. It is found that for ω < ω_p the antenna excites two waves, a slow wave and a fast wave. These waves propagate only within a cone whose axis is parallel to the biasing magnetostatic field B_o and whose semicone angle is slightly less than sin ^(-1) (ω/ω_p). In the case of ω > ω_p the antenna excites two separate modes of radiation. One of the modes is the electromagnetic mode, while the other mode is of hot plasma origin. A characteristic interference structure is noted in the angular distribution of the field. The far fields are evaluated by asymptotic methods, while the near fields are calculated numerically. The effects of antenna length ℓ, electron thermal speed, collisional and Landau damping on the near field patterns have been studied.

The input and the radiation resistances are calculated and are shown to remain finite for nonzero electron thermal velocities. The effect of Landau damping and the antenna length on the input and radiation resistances has been considered.

The radiation condition for solving Maxwell's equations is discussed and the phase and group velocities for propagation given. It is found that for ω < ω_p in the radial direction (cylindrical coordinates) the power flow is in the opposite direction to that of the phase propagation. For ω > ω_p the hot plasma mode has similar characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the five chapters that follow, I delineate my efforts over the last five years to synthesize structurally and chemically relevant models of the Oxygen Evolving Complex (OEC) of Photosystem II. The OEC is nature’s only water oxidation catalyst, in that it forms the dioxygen in our atmosphere necessary for oxygenic life. Therefore understanding its structure and function is of deep fundamental interest and could provide design elements for artificial photosynthesis and manmade water oxidation catalysts. Synthetic endeavors towards OEC mimics have been an active area of research since the mid 1970s and have mutually evolved alongside biochemical and spectroscopic studies, affording ever-refined proposals for the structure of the OEC and the mechanism of water oxidation. This research has culminated in the most recent proposal: a low symmetry Mn4CaO5 cluster with a distorted Mn3CaO4 cubane bridged to a fourth, dangling Mn. To give context for how my graduate work fits into this rich history of OEC research, Chapter 1 provides a historical timeline of proposals for OEC structure, emphasizing the role that synthetic Mn and MnCa clusters have played, and ending with our Mn3CaO4 heterometallic cubane complexes.

In Chapter 2, the triarylbenzene ligand framework used throughout my work is introduced, and trinuclear clusters of Mn, Co, and Ni are discussed. The ligand scaffold consistently coordinates three metals in close proximity while leaving coordination sites open for further modification through ancillary ligand binding. The ligands coordinated could be varied, with a range of carboxylates and some less coordinating anions studied. These complexes’ structures, magnetic behavior, and redox properties are discussed.

Chapter 3 explores the redox chemistry of the trimanganese system more thoroughly in the presence of a fourth Mn equivalent, finding a range of oxidation states and oxide incorporation dependent on oxidant, solvent, and Mn salt. Oxidation states from MnII4 to MnIIIMnIV3 were observed, with 1-4 O2– ligands incorporated, modeling the photoactivation of the OEC. These complexes were studied by X-ray diffraction, EPR, XAS, magnetometry, and CV.

As Ca2+ is a necessary component of the OEC, Chapter 4 discusses synthetic strategies for making highly structurally accurate models of the OEC containing both Mn and Ca in the Mn3CaO4 cubane + dangling Mn geometry. Structural and electrochemical characterization of the first Mn3CaO4 heterometallic cubane complex— and comparison to an all-Mn Mn4O4 analog—suggests a role for Ca2+ in the OEC. Modification of the Mn3CaO4 system by ligand substitution affords low symmetry Mn3CaO4 complexes that are the most accurate models of the OEC to date.

Finally, in Chapter 5 the reactivity of the Mn3CaO4 cubane complexes toward O- atom transfer is discussed. The metal M strongly affects the reactivity. The mechanisms of O-atom transfer and water incorporation from and into Mn4O4 and Mn4O3 clusters, respectively, are studied through computation and 18O-labeling studies. The μ3-oxos of the Mn4O4 system prove fluxional, lending support for proposals of O2– fluxionality within the OEC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The E‒H bond activation chemistry of tris-phosophino-iron and -cobalt metallaboratranes is discussed. The ferraboratrane complex (TPB)Fe(N2) heterolytically activates H‒H and the C‒H bonds of formaldehyde and arylacetylenes across an Fe‒B bond. In particular, H‒H bond cleavage at (TPB)Fe(N2) is reversible and affords the iron-hydride-borohydride complex (TPB)(μ‒H)Fe(L)(H) (L = H2, N2). (TPB)(μ‒H)Fe(L)(H) and (TPB)Fe(N2) are competent olefin and arylacetylene hydrogenation catalysts. Stoichiometric studies indicate that the B‒H unit is capable of acting as a hydride shuttle in the hydrogenation of olefin and arylacetylene substrates. The heterolytic cleavage of H2 by the (TPB)Fe system is distinct from the previously reported (TPB)Co(H2) complex, where H2 coordinates as a non-classical H2 adduct based on X-ray, spectroscopic, and reactivity data. The non-classical H2 ligand in (TPB)Co(H2) is confirmed in this work by single crystal neutron diffraction, which unequivocally shows an intact H‒H bond of 0.83 Å in the solid state. The neutron structure also shows that the H2 ligand is localized at two orientations on cobalt trans to the boron. This localization in the solid state contrasts with the results from ENDOR spectroscopy that show that the H2 ligand freely rotates about the Co‒H2 axis in frozen solution. Finally, the (TPB)Fe system, as well as related tris-phosphino-iron complexes that contain a different apical ligand unit (Si, PhB, C, and N) in place of the boron in (TPB)Fe, were studied for CO2 hydrogenation chemistry. The (TPB)Fe system is not catalytically competent, while the silicon, borate, carbon variants, (SiPR3)Fe, (PhBPiPr3)Fe, and (CPiPr3)Fe, respectively, are catalysts for the hydrogenation of CO2 to formate and methylformate. The hydricity of the CO2 reactive species in the silatrane system (SiPiPr3)Fe(N2)(H) has been experimentally estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) form a large family of proteins and are very important drug targets. They are membrane proteins, which makes computational prediction of their structure challenging. Homology modeling is further complicated by low sequence similarly of the GPCR superfamily.

In this dissertation, we analyze the conserved inter-helical contacts of recently solved crystal structures, and we develop a unified sequence-structural alignment of the GPCR superfamily. We use this method to align 817 human GPCRs, 399 of which are nonolfactory. This alignment can be used to generate high quality homology models for the 817 GPCRs.

To refine the provided GPCR homology models we developed the Trihelix sampling method. We use a multi-scale approach to simplify the problem by treating the transmembrane helices as rigid bodies. In contrast to Monte Carlo structure prediction methods, the Trihelix method does a complete local sampling using discretized coordinates for the transmembrane helices. We validate the method on existing structures and apply it to predict the structure of the lactate receptor, HCAR1. For this receptor, we also build extracellular loops by taking into account constraints from three disulfide bonds. Docking of lactate and 3,5-dihydroxybenzoic acid shows likely involvement of three Arg residues on different transmembrane helices in binding a single ligand molecule.

Protein structure prediction relies on accurate force fields. We next present an effort to improve the quality of charge assignment for large atomic models. In particular, we introduce the formalism of the polarizable charge equilibration scheme (PQEQ) and we describe its implementation in the molecular simulation package Lammps. PQEQ allows fast on the fly charge assignment even for reactive force fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.

In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to reproduce is a defining characteristic of all living organisms. During reproduction, the integrity of genetic material transferred from one generation to the next is of utmost importance. Organisms have diverse strategies to ensure the fidelity of genomic information inherited between generations of individuals. In sexually reproducing animals, the piRNA pathway is an RNA-interference (RNAi) mechanism that protects the genomes of germ cells from the replication of ‘selfish’ genetic sequences called transposable elements (TE). When left unabated, the replication of TE sequences can cause gene disruption, double-stranded DNA breaks, and germ cell death that results in sterility of the organism. In Drosophila, the piRNA pathway is divided into a cytoplasmic and nuclear branch that involves the functions of three Piwi-clade Argonaute proteins—Piwi, Aubergine (Aub) and Argonaute-3 (Ago3)—which bind piwi-interacting RNA (piRNA) to form the effector complexes that represses deleterious TE sequences.

The work presented in this thesis examines the function and regulation of Piwi proteins in Drosophila germ cells. Chapter 1 presents an introduction to piRNA biogenesis and to the essential roles occupied by each Piwi protein in the repression of TE. We discuss the architecture and function of germ granules as the cellular compartments where much of the piRNA pathway operates. In Chapter 2, we present how Piwi in the nucleus co-transcriptionally targets genomic loci expressing TE sequences to direct the deposition of repressive chromatin marks. Chapter 3 examines the cytoplasmic function of the piRNA pathway, where we find that the protein Krimper coordinates Aub and Ago3 in the piRNA ping-pong pathway to adaptively target and destroy TE transcripts. Chapter 4 explores how interactions of Piwis with associated proteins are modulated by arginine methylation modifications. Lastly, in Chapter 5 I present evidence that the cytoplasmic branch of the piRNA pathway can potentially ‘cross-talk’ with the nuclear branch to transfer sequence information to better target and co-transcriptionally silence the genomic loci coding active TE sequences. Overall, the work presented in this thesis constitutes a part of the first steps in understanding the molecular mechanisms that protect germ cells from invasion by TE sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.

We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.

The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.

We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and experimental studies were conducted to investigate the wave induced oscillations in an arbitrary shaped harbor with constant depth which is connected to the open-sea.

A theory termed the “arbitrary shaped harbor” theory is developed. The solution of the Helmholtz equation, ∇2f + k2f = 0, is formulated as an integral equation; an approximate method is employed to solve the integral equation by converting it to a matrix equation. The final solution is obtained by equating, at the harbor entrance, the wave amplitude and its normal derivative obtained from the solutions for the regions outside and inside the harbor.

Two special theories called the circular harbor theory and the rectangular harbor theory are also developed. The coordinates inside a circular and a rectangular harbor are separable; therefore, the solution for the region inside these harbors is obtained by the method of separation of variables. For the solution in the open-sea region, the same method is used as that employed for the arbitrary shaped harbor theory. The final solution is also obtained by a matching procedure similar to that used for the arbitrary shaped harbor theory. These two special theories provide a useful analytical check on the arbitrary shaped harbor theory.

Experiments were conducted to verify the theories in a wave basin 15 ft wide by 31 ft long with an effective system of wave energy dissipators mounted along the boundary to simulate the open-sea condition.

Four harbors were investigated theoretically and experimentally: circular harbors with a 10° opening and a 60° opening, a rectangular harbor, and a model of the East and West Basins of Long Beach Harbor located in Long Beach, California.

Theoretical solutions for these four harbors using the arbitrary shaped harbor theory were obtained. In addition, the theoretical solutions for the circular harbors and the rectangular harbor using the two special theories were also obtained. In each case, the theories have proven to agree well with the experimental data.

It is found that: (1) the resonant frequencies for a specific harbor are predicted correctly by the theory, although the amplification factors at resonance are somewhat larger than those found experimentally,(2) for the circular harbors, as the width of the harbor entrance increases, the amplification at resonance decreases, but the wave number bandwidth at resonance increases, (3) each peak in the curve of entrance velocity vs incident wave period corresponds to a distinct mode of resonant oscillation inside the harbor, thus the velocity at the harbor entrance appears to be a good indicator for resonance in harbors of complicated shape, (4) the results show that the present theory can be applied with confidence to prototype harbors with relatively uniform depth and reflective interior boundaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of a two-stream wind tunnel was undertaken to allow the simulation and study of certain features of the flow field around the blades of high-speed axial-flow turbomachineries. The mixing of the two parallel streams with designed Mach numbers respectively equal to 1.4 and 0.7 will simulate the transonic Mach number distribution generally obtained along the tips of the first stage blades in large bypass-fan engines.

The GALCIT hypersonic compressor plant will be used as an air supply for the wind tunnel, and consequently the calculations contained in the first chapter are derived from the characteristics and the performance of this plant.

The transonic part of the nozzle is computed by using a method developed by K. O. Friedrichs. This method consists essentially of expanding the coordinates and the characteristics of the flow in power series. The development begins with prescribing, more or less arbitrarily, a Mach number distribution along the centerline of the nozzle. This method has been programmed for an IBM 360 computer to define the wall contour of the nozzle.

A further computation is carried out to correct the contour for boundary layer buildup. This boundary layer analysis included geometry, pressure gradient, and Mach number effects. The subsonic nozzle is calculated {including boundary layer buildup) by using the same computer programs. Finally, the mixing zone downstream of the splitter plate was investigated to prescribe the wall contour correction necessary to ensure a constant-pressure test section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several new ligand platforms designed to support iron dinitrogen chemistry have been developed. First, we report Fe complexes of a tris(phosphino)alkyl (CPiPr3) ligand featuring an axial carbon donor intended to conceptually model the interstitial carbide atom of the nitrogenase iron-molybdenum cofactor (FeMoco). It is established that in this scaffold, the iron center binds dinitrogen trans to the Calkyl anchor in three structurally characterized oxidation states. Fe-Calkyl lengthening is observed upon reduction, reflective of significant ionic character in the Fe-Calkyl interaction. The anionic (CPiPr3)FeN2- species can be functionalized by a silyl electrophile to generate (CPiPr3)Fe-N2SiR3. This species also functions as a modest catalyst for the reduction of N2 to NH3. Next, we introduce a new binucleating ligand scaffold that supports an Fe(μ-SAr)Fe diiron subunit that coordinates dinitrogen (N2-Fe(μ-SAr)Fe-N2) across at least three oxidation states (FeIIFeII, FeIIFeI, and FeIFeI). Despite the sulfur-rich coordination environment of iron in FeMoco, synthetic examples of transition metal model complexes that bind N2 and also feature sulfur donor ligands remain scarce; these complexes thus represent an unusual series of low-valent diiron complexes featuring thiolate and dinitrogen ligands. The (N2-Fe(μ-SAr)Fe-N2) system undergoes reduction of the bound N2 to produce NH3 (~50% yield) and can efficiently catalyze the disproportionation of N2H4 to NH3 and N2. The present scaffold also supports dinitrogen binding concomitant with hydride as a co-ligand. Next, inspired by the importance of secondary-sphere interactions in many metalloenzymes, we present complexes of iron in two new ligand scaffolds ([SiPNMe3] and [SiPiPr2PNMe]) that incorporate hydrogen-bond acceptors (tertiary amines) which engage in interactions with nitrogenous substrates bound to the iron center (NH3 and N2H4). Cation binding is also facilitated in anionic Fe(0)-N2 complexes. While Fe-N2 complexes of a related ligand ([SiPiPr3]) lacking hydrogen-bond acceptors produce a substantial amount of ammonia when treated with acid and reductant, the presence of the pendant amines instead facilitates the formation of metal hydride species.

Additionally, we present the development and mechanistic study of copper-mediated and copper-catalyzed photoinduced C-N bond forming reactions. Irradiation of a copper-amido complex, ((m-tol)3P)2Cu(carbazolide), in the presence of aryl halides furnishes N-phenylcarbazole under mild conditions. The mechanism likely proceeds via single-electron transfer from an excited state of the copper complex to the aryl halide, generating an aryl radical. An array of experimental data are consistent with a radical intermediate, including a cyclization/stereochemical investigation and a reactivity study, providing the first substantial experimental support for the viability of a radical pathway for Ullmann C-N bond formation. The copper complex can also be used as a precatalyst for Ullmann C-N couplings. We also disclose further study of catalytic Calkyl-N couplings using a CuI precatalyst, and discuss the likely role of [Cu(carbazolide)2]- and [Cu(carbazolide)3]- species as intermediates in these reactions.

Finally, we report a series of four-coordinate, pseudotetrahedral P3FeII-X complexes supported by tris(phosphine)borate ([PhBP3FeR]-) and phosphiniminato X-type ligands (-N=PR'3) that in combination tune the spin-crossover behavior of the system. Low-coordinate transition metal complexes such as these that undergo reversible spin-crossover remain rare, and the spin equilibria of these systems have been studied in detail by a suite of spectroscopic techniques.