2 resultados para Control of mechanical systems

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion channels are a large class of integral membrane proteins that allow for the diffusion of ions across a cellular membrane and are found in all forms of life. Pentameric ligand-gated ion channels (pLGICs) comprise a large family of proteins that include the nicotinic acetylcholine receptor (nAChR) and the γ-aminobutyric acid (GABA) receptor. These ion channels are responsible for the fast synaptic transmission that occurs in humans and as a result are of fundamental biological importance. pLGICs bind ligands (neurotransmitters), and upon ligand-binding undergo activation. The activation event causes an ion channel to enter a new physical state that is able to conduct ions. Ion channels allow for the flux of ions across the membrane through a pore that is formed upon ion channel activation. For pLGICs to function properly both ligand-binding and ion channel activation must occur. The ligand-binding event has been studied extensively over the past few decades, and a detailed mechanism of binding has emerged. During activation the ion channel must undergo structural rearrangements that allow the protein to enter a conformation in which ions can flow through. Despite this great and ubiquitous importance, a fundamental understanding of the ion channel activation mechanism and kinetics, as well as concomitant structural arrangements, remains elusive.

This dissertation describes efforts that have been made to temporally control the activation of ligand-gated ion channels. Temporal control of ion channel activation provides a means by which to activate ion channels when desired. The majority of this work examines the use of light to activate ion channels. Several photocages were examined in this thesis; photocages are molecules that release a ligand under irradiation, and, for the work described here, the released ligand then activates the ion channel. First, a new water-soluble photoacid was developed for the activation of proton-sensitive ion channels. Activation of acid-sensing ion channels, ASIC2a and GLIC, was observed only upon irradiation. Next, a variety of Ru2+ photocages were also developed for the release of amine ligands. The Ru2+ systems interacted in a deleterious manner with a representative subset of biologically essential ion channels. The rapid mixing of ion channels with agonist was also examined. A detection system was built to monitor ion channels activation in the rapid mixing experiments. I have shown that liposomes, and functionally-reconstituted ELIC, are not destroyed during the mixing process. The work presented here provides the means to deliver agonist to ligand-gated ion channels in a controlled fashion.