3 resultados para Consumer Awareness
em CaltechTHESIS
Resumo:
In three essays we examine user-generated product ratings with aggregation. While recommendation systems have been studied extensively, this simple type of recommendation system has been neglected, despite its prevalence in the field. We develop a novel theoretical model of user-generated ratings. This model improves upon previous work in three ways: it considers rational agents and allows them to abstain from rating when rating is costly; it incorporates rating aggregation (such as averaging ratings); and it considers the effect on rating strategies of multiple simultaneous raters. In the first essay we provide a partial characterization of equilibrium behavior. In the second essay we test this theoretical model in laboratory, and in the third we apply established behavioral models to the data generated in the lab. This study provides clues to the prevalence of extreme-valued ratings in field implementations. We show theoretically that in equilibrium, ratings distributions do not represent the value distributions of sincere ratings. Indeed, we show that if rating strategies follow a set of regularity conditions, then in equilibrium the rate at which players participate is increasing in the extremity of agents' valuations of the product. This theoretical prediction is realized in the lab. We also find that human subjects show a disproportionate predilection for sincere rating, and that when they do send insincere ratings, they are almost always in the direction of exaggeration. Both sincere and exaggerated ratings occur with great frequency despite the fact that such rating strategies are not in subjects' best interest. We therefore apply the behavioral concepts of quantal response equilibrium (QRE) and cursed equilibrium (CE) to the experimental data. Together, these theories explain the data significantly better than does a theory of rational, Bayesian behavior -- accurately predicting key comparative statics. However, the theories fail to predict the high rates of sincerity, and it is clear that a better theory is needed.
Resumo:
This thesis describes the design and implementation of a situation awareness application. The application gathers data from sensors including accelerometers for monitoring earthquakes, carbon monoxide sensors for monitoring fires, radiation detectors, and dust sensors. The application also gathers Internet data sources including data about traffic congestion on daily commute routes, information about hazards, news relevant to the user of the application, and weather. The application sends the data to a Cloud computing service which aggregates data streams from multiple sites and detects anomalies. Information from the Cloud service is then displayed by the application on a tablet, computer monitor, or television screen. The situation awareness application enables almost all members of a community to remain aware of critical changes in their environments.
Resumo:
The proliferation of smartphones and other internet-enabled, sensor-equipped consumer devices enables us to sense and act upon the physical environment in unprecedented ways. This thesis considers Community Sense-and-Response (CSR) systems, a new class of web application for acting on sensory data gathered from participants' personal smart devices. The thesis describes how rare events can be reliably detected using a decentralized anomaly detection architecture that performs client-side anomaly detection and server-side event detection. After analyzing this decentralized anomaly detection approach, the thesis describes how weak but spatially structured events can be detected, despite significant noise, when the events have a sparse representation in an alternative basis. Finally, the thesis describes how the statistical models needed for client-side anomaly detection may be learned efficiently, using limited space, via coresets.
The Caltech Community Seismic Network (CSN) is a prototypical example of a CSR system that harnesses accelerometers in volunteers' smartphones and consumer electronics. Using CSN, this thesis presents the systems and algorithmic techniques to design, build and evaluate a scalable network for real-time awareness of spatial phenomena such as dangerous earthquakes.