2 resultados para Concurrent programs

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Regression analyses are performed on in vivo hemodialysis data for the transfer of creatinine, urea, uric acid and inorganic phosphate to determine the effects of variations in certain parameters on the efficiency of dialysis with a Kiil dialyzer. In calculating the mass transfer rates across the membrane, the effects of cell-plasma mass transfer kinetics are considered. The concept of the effective permeability coefficient for the red cell membrane is introduced to account for these effects. A discussion of the consequences of neglecting cell-plasma kinetics, as has been done to date in the literature, is presented.

A physical model for the Kiil dialyzer is presented in order to calculate the available membrane area for mass transfer, the linear blood and dialysate velocities, and other variables. The equations used to determine the independent variables of the regression analyses are presented. The potential dependent variables in the analyses are discussed.

Regression analyses were carried out considering overall mass-transfer coefficients, dialysances, relative dialysances, and relative permeabilities for each substance as the dependent variables. The independent variables were linear blood velocity, linear dialysate velocity, the pressure difference across the membrane, the elapsed time of dialysis, the blood hematocrit, and the arterial plasma concentrations of each substance transferred. The resulting correlations are tabulated, presented graphically, and discussed. The implications of these correlations are discussed from the viewpoint of a research investigator and from the viewpoint of patient treatment.

Recommendations for further experimental work are presented.

Part II

The interfacial structure of concurrent air-water flow in a two-inch diameter horizontal tube in the wavy flow regime has been measured using resistance wave gages. The median water depth, r.m.s. wave height, wave frequency, extrema frequency, and wave velocity have been measured as functions of air and water flow rates. Reynolds numbers, Froude numbers, Weber numbers, and bulk velocities for each phase may be calculated from these measurements. No theory for wave formation and propagation available in the literature was sufficient to describe these results.

The water surface level distribution generally is not adequately represented as a stationary Gaussian process. Five types of deviation from the Gaussian process function were noted in this work. The presence of the tube walls and the relatively large interfacial shear stresses precludes the use of simple statistical analyses to describe the interfacial structure. A detailed study of the behavior of individual fluid elements near the interface may be necessary to describe adequately wavy two-phase flow in systems similar to the one used in this work.