3 resultados para Color description
em CaltechTHESIS
Resumo:
Rates for A(e, e'p) on the nuclei ^2H, C, Fe, and Au have been measured at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV fc)^2 . We extract the nuclear transparency T, a measure of the importance of final state interactions (FSI) between the outgoing proton and the recoil nucleus. Some calculations based on perturbative QCD predict an increase in T with momentum transfer, a phenomenon known as Color Transparency. No statistically significant rise is seen in the present experiment.
Resumo:
The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.
Resumo:
Experiments are described using the random dot stereo patterns devised by Julesz, but substituting various colors and luminances for the usual black and white random squares. The ability to perceive the patterns in depth depends on a luminance difference between the colors used. If two colors are the same luminance, then depth is not perceived although each of the individual squares which make up the patterns is easily seen due to the color difference. This is true for any combination of different colors. If different colors are used for corresponding random squares between the left and right eye patterns, stereopsis is possible for all combinations of binocular rivalry in color, provided the luminance difference is large enough. Rivalry in luminance always precludes stereopsis, regardless of the colors involved.