4 resultados para Coleman, Obed M., 1817-1845.

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The differential energy spectra of cosmic-ray protons and He nuclei have been measured at energies up to 315 MeV/nucleon using balloon- and satellite-borne instruments. These spectra are presented for solar quiet times for the years 1966 through 1970. The data analysis is verified by extensive accelerator calibrations of the detector systems and by calculations and measurements of the production of secondary protons in the atmosphere.

The spectra of protons and He nuclei in this energy range are dominated by the solar modulation of the local interstellar spectra. The transport equation governing this process includes as parameters the solar-wind velocity, V, and a diffusion coefficient, K(r,R), which is assumed to be a scalar function of heliocentric radius, r, and magnetic rigidity, R. The interstellar spectra, jD, enter as boundary conditions on the solutions to the transport equation. Solutions to the transport equation have been calculated for a broad range of assumed values for K(r,R) and jD and have been compared with the measured spectra.

It is found that the solutions may be characterized in terms of a dimensionless parameter, ψ(r,R) = r V dr'/(K(r',R). The amount of modulation is roughly proportional to ψ. At high energies or far from the Sun, where the modulation is weak, the solution is determined primarily by the value of ψ (and the interstellar spectrum) and is not sensitive to the radial dependence of the diffusion coefficient. At low energies and for small r, where the effects of adiabatic deceleration are found to be large, the spectra are largely determined by the radial dependence of the diffusion coefficient and are not very sensitive to the magnitude of ψ or to the interstellar spectra. This lack of sensitivity to jD implies that the shape of the spectra at Earth cannot be used to determine the interstellar intensities at low energies.

Values of ψ determined from electron data were used to calculate the spectra of protons and He nuclei near Earth. Interstellar spectra of the form jD α (W - 0.25m)-2.65 for both protons and He nuclei were found to yield the best fits to the measured spectra for these values of ψ, where W is the total energy and m is the rest energy. A simple model for the diffusion coefficient was used in which the radial and rigidity dependence are separable and K is independent of radius inside a modulation region which has a boundary at a distance D. Good agreement was found between the measured and calculated spectra for the years 1965 through 1968, using typical boundary distances of 2.7 and 6.1 A.U. The proton spectra observed in 1969 and 1970 were flatter than in previous years. This flattening could be explained in part by an increase in D, but also seemed to require that a noticeable fraction of the observed protons at energies as high at 50 to 100 MeV be attributed to quiet-time solar emission. The turnup in the spectra at low energies observed in all years was also attributed to solar emission. The diffusion coefficient used to fit the 1965 spectra is in reasonable agreement with that determined from the power spectra of the interplanetary magnetic field (Jokipii and Coleman, 1968). We find a factor of roughly 3 increase in ψ from 1965 to 1970, corresponding to the roughly order of magnitude decrease in the proton intensity at 250 MeV. The change in ψ might be attributed to a decrease in the diffusion coefficient, or, if the diffusion coefficient is essentially unchanged over that period (Mathews et al., 1971), might be attributed to an increase in the boundary distance, D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study some aspects of conformal field theory, wormhole physics and two-dimensional random surfaces. Inspite of being rather different, these topics serve as examples of the issues that are involved, both at high and low energy scales, in formulating a quantum theory of gravity. In conformal field theory we show that fusion and braiding properties can be used to determine the operator product coefficients of the non-diagonal Wess-Zumino-Witten models. In wormhole physics we show how Coleman's proposed probability distribution would result in wormholes determining the value of θQCD. We attempt such a calculation and find the most probable value of θQCD to be π. This hints at a potential conflict with nature. In random surfaces we explore the behaviour of conformal field theories coupled to gravity and calculate some partition functions and correlation functions. Our results throw some light on the transition that is believed to occur when the central charge of the matter theory gets larger than one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.

In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extraordinary importance that has been attached to money throughout the ages may be appreciated when such modern writers as Alexander Delmar suggest that the history of money is the history of civilization. While this view is not accepted by most writers of the subject, all are nevertheless agreed that money plays a role of enormous importance in the affairs of men. Even in the classics are found quotations which stress this importance of the pecuniary unit upon ethical as well as economic standards.