2 resultados para Cold working
em CaltechTHESIS
Resumo:
Superconducting Cu-rich composites containing the A-15 compounds V3Si or V3Ga have been made by the "Tsuei" process, which consists of melting the constituent elements into ingots followed by subsequent cold working and heat treatment. The superconducting transition temperatures of the resulting composites have been measured. X-ray diffraction analyses have been performed to identify the phases in the alloys. The microstructures have been studied using both the optical metallograph and the scanning electron-microscope. For some composites containing V3Ga, the critical current densities as functions of transverse magnetic field up to 60 kG, and as functions of temperature from 4.2°K to 12°K have been measured. It was found that the Tsuei process does not work for the composites containing V3Si, but works satisfactorily for the composites containing V3Ga. The reasons are discussed based on the results of microstructure studies, electrical resistivity measurements, and also the relevant binary phase diagrams. The relations between the measured properties and the various metallurgical factors such as the alloy compositions, the cross-section reduction ratios of the materials, and the heat treatment are discussed. The basic mechanism for the observed superconductivity in the materials is also discussed. In addition, it was found that the Tsuei composites are expected to have high inherent magneto-thermal stability based on the stability theory of superconducting composites.
Resumo:
This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.