3 resultados para Code of Civil Procedure (CPC)
em CaltechTHESIS
Resumo:
No abstract.
Resumo:
This thesis considers in detail the dynamics of two oscillators with weak nonlinear coupling. There are three classes of such problems: non-resonant, where the Poincaré procedure is valid to the order considered; weakly resonant, where the Poincaré procedure breaks down because small divisors appear (but do not affect the O(1) term) and strongly resonant, where small divisors appear and lead to O(1) corrections. A perturbation method based on Cole's two-timing procedure is introduced. It avoids the small divisor problem in a straightforward manner, gives accurate answers which are valid for long times, and appears capable of handling all three types of problems with no change in the basic approach.
One example of each type is studied with the aid of this procedure: for the nonresonant case the answer is equivalent to the Poincaré result; for the weakly resonant case the analytic form of the answer is found to depend (smoothly) on the difference between the initial energies of the two oscillators; for the strongly resonant case we find that the amplitudes of the two oscillators vary slowly with time as elliptic functions of ϵ t, where ϵ is the (small) coupling parameter.
Our results suggest that, as one might expect, the dynamical behavior of such systems varies smoothly with changes in the ratio of the fundamental frequencies of the two oscillators. Thus the pathological behavior of Whittaker's adelphic integrals as the frequency ratio is varied appears to be due to the fact that Whittaker ignored the small divisor problem. The energy sharing properties of these systems appear to depend strongly on the initial conditions, so that the systems not ergodic.
The perturbation procedure appears to be applicable to a wide variety of other problems in addition to those considered here.
Resumo:
Proper encoding of transmitted information can improve the performance of a communication system. To recover the information at the receiver it is necessary to decode the received signal. For many codes the complexity and slowness of the decoder is so severe that the code is not feasible for practical use. This thesis considers the decoding problem for one such class of codes, the comma-free codes related to the first-order Reed-Muller codes.
A factorization of the code matrix is found which leads to a simple, fast, minimum memory, decoder. The decoder is modular and only n modules are needed to decode a code of length 2n. The relevant factorization is extended to any code defined by a sequence of Kronecker products.
The problem of monitoring the correct synchronization position is also considered. A general answer seems to depend upon more detailed knowledge of the structure of comma-free codes. However, a technique is presented which gives useful results in many specific cases.