2 resultados para Code Division Multiple Access System

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancellation of interfering frequency-modulated (FM) signals is investigated with emphasis towards applications on the cellular telephone channel as an important example of a multiple access communications system. In order to fairly evaluate analog FM multiaccess systems with respect to more complex digital multiaccess systems, a serious attempt to mitigate interference in the FM systems must be made. Information-theoretic results in the field of interference channels are shown to motivate the estimation and subtraction of undesired interfering signals. This thesis briefly examines the relative optimality of the current FM techniques in known interference channels, before pursuing the estimation and subtracting of interfering FM signals.

The capture-effect phenomenon of FM reception is exploited to produce simple interference-cancelling receivers with a cross-coupled topology. The use of phase-locked loop receivers cross-coupled with amplitude-tracking loops to estimate the FM signals is explored. The theory and function of these cross-coupled phase-locked loop (CCPLL) interference cancellers are examined. New interference cancellers inspired by optimal estimation and the CCPLL topology are developed, resulting in simpler receivers than those in prior art. Signal acquisition and capture effects in these complex dynamical systems are explained using the relationship of the dynamical systems to adaptive noise cancellers.

FM interference-cancelling receivers are considered for increasing the frequency reuse in a cellular telephone system. Interference mitigation in the cellular environment is seen to require tracking of the desired signal during time intervals when it is not the strongest signal present. Use of interference cancelling in conjunction with dynamic frequency-allocation algorithms is viewed as a way of improving spectrum efficiency. Performance of interference cancellers indicates possibilities for greatly increased frequency reuse. The economics of receiver improvements in the cellular system is considered, including both the mobile subscriber equipment and the provider's tower (base station) equipment.

The thesis is divided into four major parts and a summary: the introduction, motivations for the use of interference cancellation, examination of the CCPLL interference canceller, and applications to the cellular channel. The parts are dependent on each other and are meant to be read as a whole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences.