2 resultados para Closed-chamber IRGA method

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.

The following is my formulation of the Cesari fixed point method:

Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.

Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:

(i) Py = PWy.

(ii) y = (P + (I - P)W)y.

Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:

(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).

(2) The function y just defined is continuous from PГ into B.

(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.

Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).

The three theorems of this thesis can now be easily stated.

Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.

Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:

(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖

(2)P2Г is convex.

Then i(Г, W, P1) = i(Г, W, P2).

Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).

Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. The binding of the intercalating dye ethidium bromide to closed circular SV 40 DNA causes an unwinding of the duplex structure and a simultaneous and quantitatively equivalent unwinding of the superhelices. The buoyant densities and sedimentation velocities of both intact (I) and singly nicked (II) SV 40 DNAs were measured as a function of free dye concentration. The buoyant density data were used to determine the binding isotherms over a dye concentration range extending from 0 to 600 µg/m1 in 5.8 M CsCl. At high dye concentrations all of the binding sites in II, but not in I, are saturated. At free dye concentrations less than 5.4 µg/ml, I has a greater affinity for dye than II. At a critical amount of dye bound I and II have equal affinities, and at higher dye concentration I has a lower affinity than II. The number of superhelical turns, τ, present in I is calculated at each dye concentration using Fuller and Waring's (1964) estimate of the angle of duplex unwinding per intercalation. The results reveal that SV 40 DNA I contains about -13 superhelical turns in concentrated salt solutions.

The free energy of superhelix formation is calculated as a function of τ from a consideration of the effect of the superhelical turns upon the binding isotherm of ethidium bromide to SV 40 DNA I. The value of the free energy is about 100 kcal/mole DNA in the native molecule. The free energy estimates are used to calculate the pitch and radius of the superhelix as a function of the number of superhelical turns. The pitch and radius of the native I superhelix are 430 Å and 135 Å, respectively.

A buoyant density method for the isolation and detection of closed circular DNA is described. The method is based upon the reduced binding of the intercalating dye, ethidium bromide, by closed circular DNA. In an application of this method it is found that HeLa cells contain in addition to closed circular mitochondrial DNA of mean length 4.81 microns, a heterogeneous group of smaller DNA molecules which vary in size from 0.2 to 3.5 microns and a paucidisperse group of multiples of the mitochondrial length.

II. The general theory is presented for the sedimentation equilibrium of a macromolecule in a concentrated binary solvent in the presence of an additional reacting small molecule. Equations are derived for the calculation of the buoyant density of the complex and for the determination of the binding isotherm of the reagent to the macrospecies. The standard buoyant density, a thermodynamic function, is defined and the density gradients which characterize the four component system are derived. The theory is applied to the specific cases of the binding of ethidium bromide to SV 40 DNA and of the binding of mercury and silver to DNA.