6 resultados para Chronic chagasic infection

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.

To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.

In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commensal microbiota impacts specific immune cell populations and their functions at peripheral sites, such as gut mucosal tissues. However, it remains unknown whether gut microbiota control immunity through regulation of hematopoiesis at primary immune sites. We reveal that germ-free mice display reduced proportions and differentiation potential of specific myeloid cell progenitors of both yolk sac and bone marrow origin. Homeostatic innate immune defects may lead to impaired early responses to pathogens. Indeed, following systemic infection with Listeria monocytogenes, germ-free and oral antibiotic-treated mice display increased pathogen burden and acute death. Recolonization of germ-free mice with a complex microbiota restores defects in myelopoiesis and resistance to Listeria. These findings reveal that gut bacteria direct innate immune cell development via promoting hematopoiesis, contributing to our appreciation of the deep evolutionary connection between mammals and their microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological information storage and retrieval is a dynamic process that requires the genome to undergo dramatic structural rearrangements. Recent advances in single-molecule techniques have allowed precise quantification of the nano-mechanical properties of DNA [1, 2], and direct in vivo observation of molecules in action [3]. In this work, we will examine elasticity in protein-mediated DNA looping, whose structural rearrangement is essential for transcriptional regulation in both prokaryotes and eukaryotes. We will look at hydrodynamics in the process of viral DNA ejection, which mediates information transfer and exchange and has prominent implications in evolution. As in the case of Kepler's laws of planetary motion leading to Newton's gravitational theory, and the allometric scaling laws in biology revealing the organizing principles of complex networks [4], experimental data collapse in these biological phenomena has guided much of our studies and urged us to find the underlying physical principles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The infection of E. coli by ΦX174 at 15°C is abortive; the cells are killed by the infection but neither mature phage nor SS (single-stranded) DNA are synthesized. Parental RF (replicative form) is formed and subsequently replicated at 15°C. The RF made at 15°C shows normal infectivity and full competence to act as precursor to progeny SS DNA after an increase in temperature to 37°C. The investigations suggest that all of the proteins required for SS DNA synthesis and phage maturation are present in the abortive infection at 15°C.

Three possible causes are suggested for the abortive infection at 15°C: (a) A virus-coded protein whose role is essential to the infection is made at 15°C and assumes its native conformation, but its rate of activity is too low at this temperature to sustain the infection process. (b) Virus maturation may involve the formation of a DNA-protein complex and conformational changes which have an energy threshold infrequently reached at 15°C. (c) A host-coded protein present in uninfected cells, and whose activity is essential to the infection at all temperatures, but not to the host at 15°C, is inactive at 15°C. An hypothesis of this type is offered which proposes that the temperature-limiting factor in SS DNA synthesis in vivo may reflect a temperature-dependent property of the host DNA polymerase.

Part II

Three distinct stages are demonstrated in the process whereby ΦX174 invades its host: (1) Attachment: The phage attach to the cell in a manner that does not irreversibly alter the phage particle and which exhibits "single-hit" kinetics. The total charge on the phage particle is demonstrated to be important in determining the rate at which stable attachment is effected. The proteins specified by ΦX cistrons II, III and VII play roles, which may be indirect, in the attachment reaction. (2) Eclipse: 'The attached phage undergo a conformational change. Some of the altered phage particles spontaneously detach from the cell (in a non-infective form) while the remainder are more tightly bound to the cell. The altered phage particles detached (spontaneously or chemically) from such complexes have at least 40% of their DNA extruded from the phage coat. It is proposed that this particle is, or derives from, a direct intermediate in the penetration of the viral DNA.

The kinetics for the eclipse of attached phage particles are first-order with respect to phage concentration and biphasic; about 85% of the phage eclipse at one rate (k = 0.86 min-1) and the remainder do so at a distinctly lesser rate (k = 0.21 min-1).

The eclipse event is very temperature-dependent and has the relatively high Arrhenius activation energy of 36.6 kcal/mole, indicating the cooperative nature of the process. The temperature threshold for eclipse is 17 to 18°C.

At present no specific ΦX cistron is identified as affecting the eclipse process. (3) DNA penetration: A fraction of the attached, eclipsed phage particles corresponding in number to the plaque-forming units complete DNA penetration. The penetrated DNA is found in the cell as RF, and the empty phage protein coat remains firmly attached to the exterior of the cell. This step is inhibited by prior irradiation of the phage with relatively high doses of UV light and is insensitive to the presence of KCN and NaN3. Temporally excluded superinfecting phages do not achieve DNA penetration.

Both eclipsed phage particles and empty phage protein coats may be dissociated from infected cells; some of their properties are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of principles from evolutionary biology has long been used to gain new insights into the progression and clinical control of both infectious diseases and neoplasms. This iterative evolutionary process consists of expansion, diversification and selection within an adaptive landscape - species are subject to random genetic or epigenetic alterations that result in variations; genetic information is inherited through asexual reproduction and strong selective pressures such as therapeutic intervention can lead to the adaptation and expansion of resistant variants. These principles lie at the center of modern evolutionary synthesis and constitute the primary reasons for the development of resistance and therapeutic failure, but also provide a framework that allows for more effective control.

A model system for studying the evolution of resistance and control of therapeutic failure is the treatment of chronic HIV-1 infection by broadly neutralizing antibody (bNAb) therapy. A relatively recent discovery is that a minority of HIV-infected individuals can produce broadly neutralizing antibodies, that is, antibodies that inhibit infection by many strains of HIV. Passive transfer of human antibodies for the prevention and treatment of HIV-1 infection is increasingly being considered as an alternative to a conventional vaccine. However, recent evolution studies have uncovered that antibody treatment can exert selective pressure on virus that results in the rapid evolution of resistance. In certain cases, complete resistance to an antibody is conferred with a single amino acid substitution on the viral envelope of HIV.

The challenges in uncovering resistance mechanisms and designing effective combination strategies to control evolutionary processes and prevent therapeutic failure apply more broadly. We are motivated by two questions: Can we predict the evolution to resistance by characterizing genetic alterations that contribute to modified phenotypic fitness? Given an evolutionary landscape and a set of candidate therapies, can we computationally synthesize treatment strategies that control evolution to resistance?

To address the first question, we propose a mathematical framework to reason about evolutionary dynamics of HIV from computationally derived Gibbs energy fitness landscapes -- expanding the theoretical concept of an evolutionary landscape originally conceived by Sewall Wright to a computable, quantifiable, multidimensional, structurally defined fitness surface upon which to study complex HIV evolutionary outcomes.

To design combination treatment strategies that control evolution to resistance, we propose a methodology that solves for optimal combinations and concentrations of candidate therapies, and allows for the ability to quantifiably explore tradeoffs in treatment design, such as limiting the number of candidate therapies in the combination, dosage constraints and robustness to error. Our algorithm is based on the application of recent results in optimal control to an HIV evolutionary dynamics model and is constructed from experimentally derived antibody resistant phenotypes and their single antibody pharmacodynamics. This method represents a first step towards integrating principled engineering techniques with an experimentally based mathematical model in the rational design of combination treatment strategies and offers predictive understanding of the effects of combination therapies of evolutionary dynamics and resistance of HIV. Preliminary in vitro studies suggest that the combination antibody therapies predicted by our algorithm can neutralize heterogeneous viral populations despite containing resistant mutations.