12 resultados para Christmas-B

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a measurement of direct CP violation in b to s+gamma Acp, and the measurement of a difference between Acp for neutral B and charged B mesons, Delta A_{X_s\gamma}, using 429 inverse femtobarn of data recorded at the Upsilon(4S) resonance with the BABAR detector. B mesons are reconstructed from 16 exclusive final states. Particle identification is done using an algorithm based on Error Correcting Output Code with an exhaustive matrix. Background rejection and best candidate selection are done using two decision tree-based classifiers. We found $\acp = 1.73%+-1.93%+-1.02% and Delta A_X_sgamma = 4.97%+-3.90%+-1.45% where the uncertainties are statistical and systematic respectively. Based on the measured value of Delta A_X_sgamma, we determine a 90% confidence interval for Im C_8g/C_7gamma, where C_7gamma and C_8g are Wilson coefficients for New Physics amplitudes, at -1.64 < Im C_8g/C_7gamma < 6.52.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since its discovery in 1896, the Buchner reaction has fascinated chemists for more than a century. The highly reactive nature of the carbene intermediates allows for facile dearomatization of stable aromatic rings, and provides access to a diverse array of cyclopropane and seven-membered ring architectures. The power inherent in this transformation has been exploited in the context of a natural product total synthesis and methodology studies.

The total synthesis work details efforts employed in the enantioselective total synthesis of (+)-salvileucalin B. The fully-substituted cyclopropane within the core of the molecule arises from an unprecedented intramolecular Buchner reaction involving a highly functionalized arene and an α-diazo-β-ketonitrile. An unusual retro-Claisen rearrangement of a complex late-stage intermediate was discovered on route to the natural product.

The unique reactivity of α-diazo-β-ketonitriles toward arene cyclopropanation was then investigated in a broader methodological study. This specific di-substituted diazo moiety possesses hitherto unreported selectivity in intramolecular Buchner reactions. This technology was enables the preparation of highly functionalized norcaradienes and cyclopropanes, which themselves undergo various ring opening transformations to afford complex polycyclic structures.

Finally, an enantioselective variant of the intramolecular Buchner reaction is described. Various chiral copper and dirhodium catalysts afforded moderate stereoinduction in the cyclization event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.

In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.

In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.

One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.

The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite stock of alkaline gabbro and syenite is intrusive into limestone of the Del Carmen, Sue Peake and Santa Elena Formations at the northwest end of the Christmas Mountains. There is abundant evidence of solution of wallrock by magma but nowhere are gabbro and limestone in direct contact. The sequence of lithologies developed across the intrusive contact and across xenoliths is gabbro, pyroxenite, calc-silicate skarn, marble. Pyroxenite is made up of euhedral crystals of titanaugite and sphene in a leucocratic matrix of nepheline, Wollastonite and alkali feldspar. The uneven modal distribution of phases in pyroxenite and the occurrence' of nepheline syenite dikes, intrusive into pyroxenite and skarn, suggest that pyroxenite represents an accumulation of clinopyroxene "cemented" together by late-solidifying residual magma of nepheline syenite composition. Assimilation of limestone by gabbroic magma involves reactions between calcite and magma and/or crystals in equilibrium with magma and crystallization of phases in which the magma is saturated, to supply energy for the solution reaction. Gabbroic magma was saturated with plagioclase and clinopyroxene at the time of emplacement. The textural and mineralogic features of pyroxenite can be produced by the reaction 2( 1-X) CALCITE + ANXABl-X = (1-X) NEPHELINE+ 2(1-X) WOLLASTONITE+ X ANORTHITE+ 2(1-X) CO2. Plagioclase in pyroxenite has corroded margins and is rimmed by nepheline, suggestive of resorption by magma. Anorthite and wollastonite enter solid solution in titanaugite. For each mole of calcite dissolved, approximately one mole of clinopyroxene was crystallized. Thus the amount of limestone that may be assimilated is limited by the concentration of potential clinopyroxene in the magma. Wollastonite appears as a phase when magma has been depleted in iron and magnesium by crystallization of titanaugite. The predominance of mafic and ultramafic compositions among contaminated rocks and their restriction to a narrow zone along the intrusive contact provides little evidence for the generation of a significant volume of desilicated magma as a result of limestone assimilation.

Within 60 m of the intrusive contact with the gabbro, nodular chert in the Santa Elena Limestone reacted with the enveloping marble to form spherical nodules of high-temperature calc-silicate minerals. The phases wollastonite, rankinite, spurrite, tilleyite and calcite, form a series of sharply-bounded, concentric monomineralic and two-phase shells which record a step-wise decrease in silica content from the core of a nodule to its rim. Mineral zones in the nodules vary 'with distance from the gabbro as follows:

0-5 m CALCITE + SPURRITE + RANKINITE + WOLLASTONITE
5-16 m CALCITE + TILLEYITE ± SPURRITE + RANKINITE + WOLLASTONITE
16-31 m CALCITE + TILLEYITE + WOLLASTONITE
31-60 m CALCITE + WOLLASTONITE
60-plus CALCITE + QUARTZ

The mineral of a one-phase zone is compatible with the phases bounding it on either side but these phases are incompatible in the same volume of P-T-XCO2.

Growth of a monomineralio zone is initiated by reaction between minerals of adjacent one-phase zones which become unstable with rising temperature to form a thin layer of a new single phase that separates the reactants and is compatible with both of them. Because the mineral of the new zone is in equilibrium with the phases at both of its contacts, gradients in the chemical potentials of the exchangeable components are established across it. Although zone boundaries mark discontinuities in the gradients of bulk composition, two-phase equilibria at the contacts demonstrate that the chemical potentials are continuous. Hence, Ca, Si and CO2 were redistributed in the growing nodule by diffusion. A monomineralic zone grows at the expense of an adjacent zone by reaction between diffusing components and the mineral of the adjacent zone. Equilibria between two phases at zone boundaries buffers the chemical potentials of the diffusing species. Thus, within a monomineralic zone, the chemical potentials of the diffusing components are controlled external to the local assemblage by the two-phase equilibria at the zone boundaries.

Mineralogically zoned calc-silicate skarn occurs as a narrow band that separates pyroxenite and marble along the intrusive contact and forms a rim on marble xenoliths in gabbro. Skarn consists of melilite or idocrase pseudomorphs of melili te, one or two . stoichiometric calcsilicate phases and accessory Ti-Zr garnet, perovskite and magnetite. The sequence of mineral zones from pyroxenite to marble, defined by a characteristic calc-silicate, is wollastonite, rankinite, spurrite, calcite. Mineral assemblages of adjacent skarn zones are compatible and the set of zones in a skarn band defines a facies type, indicating that the different mineral assemblages represent different bulk compositions recrystallized under identical conditions. The number of phases in each zone is less than the number that might be expected to result from metamorphism of a general bulk composition under conditions of equilibrium, trivariant in P, T and uCO2. The "special" bulk composition of each zone is controlled by reaction between phases of the zones bounding it on either side. The continuity of the gradients of composition of melilite and garnet solid solutions across the skarn is consistent with the local equilibrium hypothesis and verifies that diffusion was the mechanism of mass transport. The formula proportions of Ti and Zr in garnet from skarn vary antithetically with that of Si Which systematically decreases from pyroxenite to marble. The chemical potential of Si in each skarn zone was controlled by the coexisting stoichiometric calc-silicate phases in the assemblage. Thus the formula proportion of Si in garnet is a direct measure of the chemical potential of Si from point to point in skarn. Reaction between gabbroic magma saturated with plagioclase and clinopyroxene produced nepheline pyroxenite and melilite-wollastonite skarn. The calcsilicate zones result from reaction between calcite and wollastonite to form spurrite and rankinite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ritterazine and cephalostatin natural products have biological activities and structures that are interesting to synthetic organic chemists. These products have been found to exhibit significant cytotoxicity against P388 murine leukemia cells, and therefore have the potential to be used as anticancer drugs. The ritterazines and cephalostatins are steroidal dimers joined by a central pyrazine ring. Given that the steroid halves are unsymmetrical and highly oxygenated, there are several challenges in synthesizing these compounds in an organic laboratory.

Ritterazine B is the most potent derivative in the ritterazine family. Its biological activity is comparable to drugs that are being used to treat cancer today. For this reason, and the fact that there are no reported syntheses of ritterazine B to date, our lab set out to synthesize this natural product.

Herein, efforts toward the synthesis of the western fragment of ritterazine B are described. Two different routes are explored to access a common intermediate. An alkyne conjugate addition reaction was initially investigated due to the success of this key reaction in the synthesis of the eastern fragment. However, it has been found that a propargylation reaction has greater reactivity and yields, and has the potential to reduce the step count of the synthesis of the western fragment of ritterazine B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictions of the SU(3) flavor symmetry of the strong interactions for the weak decay of charmed baryons and B-mesons are detailed. It is hoped that comparison between these predictions and experiment will shed some light on the underlying dynamics involved in these weak decays. Although only a few decay modes of the charmed baryons and B-mesons have been studied experimentally it is hoped that the next generation of B-factories and even Z-decays at LEP will provide enough events to test these predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tryptophan and unnatural tryptophan derivatives are important building blocks for the total synthesis of natural products, as well as the development of new drugs, biological probes, and chiral small molecule catalysts. This thesis describes various catalytic methods for the preparation of tryptophan derivatives as well as their functionalization and use in natural product total synthesis.

Herein, the tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction between 2-substituted indoles and methyl 2-acetamidoacrylate to provide enantioenriched trytophans is reported. This method inspired further work in the area of transition metal catalyzed arylation reactions. We report the development of the coppercatalyzed arylation of tryptamine and tryptophan derivatives. The utility of these transformations is highlighted in the five-step syntheses of the natural products (+)-naseseazine A and B. Further work on the development of a mild and general Larock indolization protocol to access unnatural tryptophans is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopiperazine (DKP) motif is found in a wide range of biologically active natural products. This work details our efforts toward two classes of DKP-containing natural products.

Class one features the pyrroloindoline structure, derived from tryptophans. Our group developed a highly enantioselective (3 + 2) formal cycloaddition between indoles and acrylates to provide pyrroloindoline products possessing three stereocenters. Utilizing this methodology, we accomplished asymmetric total synthesis of three natural products: (–)-lansai B, (+)-nocardioazines A and B. Total synthesis of (–)-lansai B was realized in six steps, and featured an amino acid dimerization strategy. The total synthesis of (+)-nocardioazine B was also successfully completed in ten steps. Challenges were met in approaching (+)-nocardioazine A, where a seemingly easy last-step epoxidization did not prove successful. After re-examining our synthetic strategy, an early-stage epoxidation strategy was pursued, which eventually yielded a nine-step total synthesis of (+)-nocardioazine A.

Class two is the epidithiodiketopiperazine (ETP) natural products, which possesses an additional episulfide bridge in the DKP core. With the goal of accessing ETPs with different peripheral structures for structure-activity relationship studies, a highly divergent route was successfully developed, which was showcased in the formal synthesis of (–)-emethallicin E and (–)-haematocin, and the first asymmetric synthesis of (–)-acetylapoaranotin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lowest T = 2 states have been identified and studied in the nuclei 12C, 12B, 20F and and 28Al. The first two of these were produced in the reactions 14C(p,t)12C and 14C (p,3He)12B, at 50.5 and 63.4 MeV incident proton energy respectively, at the Oak Ridge National Laboratory. The T = 2 states in 20F and 28Al were observed in (3He,p) reactions at 12-MeV incident energy, with the Caltech Tandem accelerator.

The results for the four nuclei studied are summarized below:

(1) 12C: the lowest T = 2 state was located at an excitation energy of 27595 ± 20 keV, and has a width less than 35 keV.

(2) 12B: the lowest T = 2 state was found at an excitation energy of 12710 ± 20 keV. The width was determined to be less than 54 keV and the spin and parity were confirmed to be 0+. A second 12B state (or doublet) was observed at an excitation energy of 14860 ± 30 keV with a width (if the group corresponds to a single state) of 226 ± 30 keV.

(3) 20F: the lowest T = 2 state was observed at an excitation of 6513 ± 5 keV; the spin and parity were confirmed to be 0+. A second state, tentatively identified as T = 2 from the level spacing, was located at 8210 ± 6 keV.

(4) 28Al: the lowest T = 2 state was identified at an excitation of 5997 ± 6 keV; the spin and parity were confirmed to be 0+. A second state at an excitation energy of 7491 ± 11 keV is tentatively identified as T = 2, with a corresponding (tentative) spin and parity assignment Jπ = 2+.

The results of the present work and the other known masses of T = 2 states and nuclei for 8 ≤ A ≤ 28 are summarized, and massequation coefficients have been extracted for these multiplets. These coefficients were compared with those from T = 1 multiplets, and then used to predict the mass and stability of each of the unobserved members of the T = 2 multiplets.