2 resultados para Christian law in India Law of Marriage
em CaltechTHESIS
Resumo:
The Book of John Mandeville, while ostensibly a pilgrimage guide documenting an English knight’s journey into the East, is an ideal text in which to study the developing concept of race in the European Middle Ages. The Mandeville-author’s sense of place and morality are inextricably linked to each other: Jerusalem is the center of his world, which necessarily forces Africa and Asia to occupy the spiritual periphery. Most inhabitants of Mandeville’s landscapes are not monsters in the physical sense, but at once startlingly human and irreconcilably alien in their customs. Their religious heresies, disordered sexual appetites, and monstrous acts of cannibalism label them as fallen state of the European Christian self. Mandeville’s monstrosities lie not in the fantastical, but the disturbingly familiar, coupling recognizable humans with a miscarriage of natural law. In using real people to illustrate the moral degeneracy of the tropics, Mandeville’s ethnography helps shed light on the missing link between medieval monsters and modern race theory.
Resumo:
Despite the complexity of biological networks, we find that certain common architectures govern network structures. These architectures impose fundamental constraints on system performance and create tradeoffs that the system must balance in the face of uncertainty in the environment. This means that while a system may be optimized for a specific function through evolution, the optimal achievable state must follow these constraints. One such constraining architecture is autocatalysis, as seen in many biological networks including glycolysis and ribosomal protein synthesis. Using a minimal model, we show that ATP autocatalysis in glycolysis imposes stability and performance constraints and that the experimentally well-studied glycolytic oscillations are in fact a consequence of a tradeoff between error minimization and stability. We also show that additional complexity in the network results in increased robustness. Ribosome synthesis is also autocatalytic where ribosomes must be used to make more ribosomal proteins. When ribosomes have higher protein content, the autocatalysis is increased. We show that this autocatalysis destabilizes the system, slows down response, and also constrains the system’s performance. On a larger scale, transcriptional regulation of whole organisms also follows architectural constraints and this can be seen in the differences between bacterial and yeast transcription networks. We show that the degree distributions of bacterial transcription network follow a power law distribution while the yeast network follows an exponential distribution. We then explored the evolutionary models that have previously been proposed and show that neither the preferential linking model nor the duplication-divergence model of network evolution generates the power-law, hierarchical structure found in bacteria. However, in real biological systems, the generation of new nodes occurs through both duplication and horizontal gene transfers, and we show that a biologically reasonable combination of the two mechanisms generates the desired network.