8 resultados para Chick embryo
em CaltechTHESIS
Resumo:
The sea urchin embryonic skeleton, or spicule, is deposited by mesenchymal progeny of four precursor cells, the micromeres, which are determined to the skeletogenic pathway by a process known as cytoplasmic localization. A gene encoding one of the major products of the skeletogenic mesenchyme, a prominent 50 kD protein of the spicule matrix, has been characterized in detail. cDNA clones were first isolated by antibody screening of a phage expression library, followed by isolation of homologous genomic clones. The gene, known as SM50, is single copy in the sea urchin genome, is divided into two exons of 213 and 1682 bp, and is expressed only in skeletogenic cells. Transcripts are first detectable at the 120 cell stage, shortly after the segregation of the skeletogenic precursors from the rest of the embryo. The SM50 open reading frame begins within the first exon, is 450 amino acids in length, and contains a loosely repeated 13 amino acid motif rich in acidic residues which accounts for 45% of the protein and which is possibly involved in interaction with the mineral phase of the spicule.
The important cis-acting regions of the SM50 gene necessary for proper regulation of expression were identified by gene transfer experiments. A 562 bp promoter fragment, containing 438 bp of 5' promoter sequence and 124 bp of the SM50 first exon (including the SM50 initiation codon), was both necessary and sufficient to direct high levels of expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene specifically in the skeletogenic cells. Removal of promoter sequences between positions -2200 and -438, and of transcribed regions downstream of +124 (including the SM50 intron), had no effect on the spatial or transcriptional activity of the transgenes.
Regulatory proteins that interact with the SM50 promoter were identified by the gel retardation assay, using bulk embryo mesenchyme blastula stage nuclear proteins. Five protein binding sites were identified and mapped to various degrees of resolution. Two sites are homologous, may be enhancer elements, and at least one is required for expression. Two additional sites are also present in the promoter of the aboral ectoderm specific cytoskeletal actin gene CyIIIa; one of these is a CCAA T element, the other a putative repressor element. The fifth site overlaps the binding site of the putative repressor and may function as a positive regulator by interfering with binding of the repressor. All of the proteins are detectable in nuclear extracts prepared from 64 cell stage embryos, a stage just before expression of SM50 is initiated, as well as from blastula and gastrula stage; the putative enhancer binding protein may be maternal as well.
Resumo:
Early embryogenesis in metazoa is controlled by maternally synthesized products. Among these products, the mature egg is loaded with transcripts representing approximately two thirds of the genome. A subset of this maternal RNA pool is degraded prior to the transition to zygotic control of development. This transfer of control of development from maternal to zygotic products is referred to as the midblastula transition (or MBT). It is believed that the degradation of maternal transcripts is required to terminate maternal control of development and to allow zygotic control of development to begin. Until now this process of maternal transcript degradation and the subsequent timing of the MBT has been poorly understood. I have demonstrated that in the early embryo there are two independent RNA degradation pathways, either of which is sufficient for transcript elimination. However, only the concerted action of both pathways leads to elimination of transcripts with the correct timing, at the MBT. The first pathway is maternally encoded, is triggered by egg activation, and is targeted to specific classes of mRNAs through cis-acting elements in the 3' untranslated region (UTR}. The second pathway is activated 2 hr after fertilization and functions together with the maternal pathway to ensure that transcripts are degraded by the MBT. In addition, some transcripts fail to degrade at select subcellular locations adding an element of spatial control to RNA degradation. The spatial control of RNA degradation is achieved by protecting, or masking, transcripts from the degradation machinery. The RNA degradation and protection events are regulated by distinct cis-elements in the 3' untranslated region (UTR). These results provide the first systematic dissection of this highly conserved process in development and demonstrate that RNA degradation is a novel mechanism used for both temporal and spatial control of development.
Resumo:
Neural crest cells are unique to vertebrates and essential to the development and evolution of the craniofacial skeleton. Using a combination of DiI cell lineage tracing, transcriptomics, and analysis of key transcription factors of the Sox Family, I examined neural crest development in the sea lamprey, Petromyzon marinus, as the most basal extant vertebrate from which it is possible to get embryos. The results have uncovered distinct cranial and trunk neural crest subpopulations along the anterior-posterior axis of the lamprey embryo, with a clear separation between the two. However, no evidence of the presence of an intermediate vagal neural crest population was uncovered. Comparing cranial neural crest genes between lamprey and chick, either by examining individual candidate genes or whole genome transcriptome analysis, reveals significant changes in the cranial neural crest gene regulatory network of lamprey compared with chick. In particular, the lamprey cranial neural crest is "missing" several gnathostome cranial crest genes. We speculate that these may underlie the evolutionary divergence of craniofacial development between jawed and jawless vertebrates. Despite the absence of vagal neural crest, DiI-labeling shows that trunk neural crest-derived cells, likely homologous to mammalian Schwann cell precursors, contribute to the lamprey enteric nervous system, potentially representing the most primitive form of neural crest cells contribution to the ENS. Finally, I characterized key members of the Sox Family (Sox B-F) due to their importance in neural crest specification in other species. In comparative studies of the SoxC genes (Sox4, Sox11, and Sox12) in both lamprey and Xenopus, I found similar expression patterns and a novel key role in early neural crest specification, suggesting a conserved role of the SoxC genes amongst vertebrates. Taken together, this work represents important progress in characterizing the early evolution of the neural crest in vertebrates and its role in the transition from jawless to jawed vertebrates.
Resumo:
In order to identify new molecules that might play a role in regional specification of the nervous system, we generated and characterized monoclonal antibodies (mAbs) that have positionally-restricted labeling patterns.
The FORSE-1 mAb was generated using a strategy designed to produce mAbs against neuronal cell surface antigens that might be regulated by regionally-restricted transcription factors in the developing central nervous system (CNS). FORSE-1 staining is enriched in the forebrain as compared to the rest of the CNS until E18. Between E11.5-E13.5, only certain areas of the forebrain are labeled. There is also a dorsoventrally-restricted region of labeling in the hindbrain and spinal cord. The mAb labels a large proteoglycan-like cell-surface antigen (>200 kD). The labeling pattern of FORSE-1 is conserved in various mammals and in chick.
To determine whether the FORSE-1 labeling pattern is similar to that of known transcription factors, the expression of BF-1 and Dlx-2 was compared with FORSE-1. There is a striking overlap between BF-1 and FORSE-1 in the telencephalon. In contrast, FORSE-1 and Dlx-2 have very different patterns of expression in the forebrain, suggesting that regulation by Dlx-2 alone cannot explain the distribution of FORSE-1. They do, however, share some sharp boundaries in the diencephalon. In addition, FORSE-1 identifies some previously unknown boundaries in the developing forebrain. Thus, FORSE-1 is a new cell surface marker that can be used to subdivide the embryonic forebrain into regions smaller than previously described, providing further complexity necessary for developmental patterning.
I also studied the expression of the cell surface protein CD9 in the developing and adult rat nervous system. CD9 is implicated in intercellular signaling and cell adhesion in the hematopoetic system. In the nervous system, CD9 may perform similar functions in early sympathetic ganglia, chromaffin cells, and motor neurons, all of which express the protein. The presence of CD9 on the surfaces of Schwann cells and axons at the appropriate time may allow the protein to participate in the cellular interactions involved in myelination.
Resumo:
Life is the result of the execution of molecular programs: like how an embryo is fated to become a human or a whale, or how a person’s appearance is inherited from their parents, many biological phenomena are governed by genetic programs written in DNA molecules. At the core of such programs is the highly reliable base pairing interaction between nucleic acids. DNA nanotechnology exploits the programming power of DNA to build artificial nanostructures, molecular computers, and nanomachines. In particular, DNA origami—which is a simple yet versatile technique that allows one to create various nanoscale shapes and patterns—is at the heart of the technology. In this thesis, I describe the development of programmable self-assembly and reconfiguration of DNA origami nanostructures based on a unique strategy: rather than relying on Watson-Crick base pairing, we developed programmable bonds via the geometric arrangement of stacking interactions, which we termed stacking bonds. We further demonstrated that such bonds can be dynamically reconfigurable.
The first part of this thesis describes the design and implementation of stacking bonds. Our work addresses the fundamental question of whether one can create diverse bond types out of a single kind of attractive interaction—a question first posed implicitly by Francis Crick while seeking a deeper understanding of the origin of life and primitive genetic code. For the creation of multiple specific bonds, we used two different approaches: binary coding and shape coding of geometric arrangement of stacking interaction units, which are called blunt ends. To construct a bond space for each approach, we performed a systematic search using a computer algorithm. We used orthogonal bonds to experimentally implement the connection of five distinct DNA origami nanostructures. We also programmed the bonds to control cis/trans configuration between asymmetric nanostructures.
The second part of this thesis describes the large-scale self-assembly of DNA origami into two-dimensional checkerboard-pattern crystals via surface diffusion. We developed a protocol where the diffusion of DNA origami occurs on a substrate and is dynamically controlled by changing the cationic condition of the system. We used stacking interactions to mediate connections between the origami, because of their potential for reconfiguring during the assembly process. Assembling DNA nanostructures directly on substrate surfaces can benefit nano/microfabrication processes by eliminating a pattern transfer step. At the same time, the use of DNA origami allows high complexity and unique addressability with six-nanometer resolution within each structural unit.
The third part of this thesis describes the use of stacking bonds as dynamically breakable bonds. To break the bonds, we used biological machinery called the ParMRC system extracted from bacteria. The system ensures that, when a cell divides, each daughter cell gets one copy of the cell’s DNA by actively pushing each copy to the opposite poles of the cell. We demonstrate dynamically expandable nanostructures, which makes stacking bonds a promising candidate for reconfigurable connectors for nanoscale machine parts.
Resumo:
During early stages of Drosophila development the heat shock response cannot be induced. It is reasoned that the adverse effects on cell cycle and cell growth brought about by Hsp70 induction must outweigh the beneficial aspects of Hsp70 induction in the early embryo. Although the Drosophila heat shock transcription factor (dHSF) is abundant in the early embryo, it does not enter the nucleus in response to heat shock. In older embryos and in cultured cells the factor is localized within the nucleus in an apparent trimeric structure that binds DNA with high affinity. The domain responsible for nuclear localization upon stress resides between residues 390 and 420 of the dHSF. Using that domain as bait in a yeast two-hybrid system we now report the identification and cloning of a nuclear transport protein Drosophila karyopherin-α3(dKap- α3). Biochemical methods demonstrate that the dKap-α3 protein binds specifically to the dHSF's nuclear localization sequence (NLS). Furthermore, the dKap-α3 protein does not associate with NLSs that contain point mutations which are not transported in vivo. Nuclear docking studies also demonstrate specific nuclear targeting of the NLS substrate by dKap-α3.Consistant with previous studies demonstrating that early Drosophila embryos are refractory to heat shock as a result of dHSF nuclear exclusion, we demonstrate that the early embryo is deficient in dKap-α3 protein through cycle 12. From cycle 13 onward the transport factor is present and the dHSF is localized within the nucleus thus allowing the embryo to respond to heat shock.
The pair-rule gene fushi tarazu (ftz) is a well-studied zygotic segmentation gene that is necessary for the development of the even-numbered parasegments in Drosophila melanogastor. During early embryogenesis, ftz is expressed in a characteristic pattern of seven stripes, one in each of the even-numbered parasegments. With a view to understand how ftz is transcriptionally regulated, cDNAs that encode transcription factors that bind to the zebra element of the ftz promoter have been cloned. Chapter Ill reports the cloning and characterization of the eDNA encoding zeb-1 (zebra element binding protein), a novel steroid receptor-like molecule that specifically binds to a key regulatory element of the ftz promoter. In transient transfection assays employing Drosophila tissue culture cells, it has been shown that zeb-1 as well as a truncated zeb-1 polypeptide (zeb480) that lacks the putative ligand binding domain function as sequencespecific trans-activators of the ftz gene.
The Oct factors are members of the POU family of transcription factors that are shown to play important roles during development in mammals. Chapter IV reports the eDNA cloning and expression of a Drosophila Oct transcription factor. Whole mount in-situ hybridization experiments revealed that the spatial expression patterns of this gene during embryonic development have not yet been observed for any other gene. In early embryogenesis, its transcripts are transiently expressed as a wide uniform band from 20-40% of the egg length, very similar to that of gap genes. This pattern progressively resolves into a series of narrower stripes followed by expression in fourteen stripes. Subsequently, transcripts from this gene are expressed in the central nervous system and the brain. When expressed in the yeast Saccharomyces cerevisiae, this Drosophila factor functions as a strong, octamer-dependent activator of transcription. The data strongly suggest possible functions for the Oct factor in pattern formation in Drosophila that might transcend the boundaries of genetically defined segmentation genes.
Resumo:
I. Alkaline phosphatase activity in the developing sea urchin Lytechinus pictus has been investigated with respect to intensity at various stages, ionic requirements and intracellular localization. The activity per embryo remains the same in the unfertilized egg, fertilized egg and cleavage stages. At a time just prior to gastrulation (about 10 hours after fertilization) the activity per embryo begins to rise and increases after 300 times over the activity in the cleavage stages during the next 60 hours.
The optimum ionic strength for enzymatic activity shows a wide peak at 0.6 to 1.0. Calcium and magnesium show an additional optimum at a concentration in the range of 0.02 to 0.07 molar. EDTA at concentrations of 0.0001 molar and higher shows a definite inhibition of activity.
The intracellular localization of alkaline phosphatase in homogenates of 72-hour embryos has been studied employing the differential centrifugation method. The major portion of the total activity in these homogenates was found in mitochondrial and microsomal fractions with less than 5% in the nuclear fraction and less than 2% in the final supernatant. The activity could be released from all fractions by treatment with sodium deoxycholate.
II. The activation of protein biosynthesis at fertilization in eggs of the sea urchins Lytechinus pictus and Strongylocentrotus purpuratus has been studied in both intact eggs and cell-free homogenates. It is shown that homogenates from both unfertilized and fertilized eggs are dependent on potassium and magnesium ions for optimum amino acid incorporation activity and in the case of the latter the concentration range is quite narrow. Though the optimum magnesium concentrations appear to differ slightly in homogenates of unfertilized and fertilized eggs, in no case was it observed that unfertilized egg homogenates were stimulated to incorporate at a level comparable to that of the fertilized eggs.
An activation of amino acid incorporation into protein has also been shown to occur in parthenogenetically activated non-nucleate sea urchin egg fragments or homogenates thereof. This activation resembles that in the fertilized whole egg or fragment both in amount and pattern of activation. Furthermore, it is shown that polyribosomes form in these non-nucleate fragments upon artificial activation. These findings are discussed along with possible mechanisms for activation of the system at fertilization.
Resumo:
The cytolytic interaction of Polyoma virus with mouse embryo cells has been studied by radiobiological methods known to distinguish temperate from virulent bacteriophage. No evidence for "temperate" properties of Polyoma was found. During the course of these studies, it was observed that the curve of inactivation of Polyoma virus by ultraviolet light had two components - a more sensitive one at low doses, and a less sensitive one at higher doses. Virus which survives a low dose has an eclipse period similar to that of unirradiated virus, while virus surviving higher doses shows a significantly longer eclipse period. If Puromycin is present during the early part of the eclipse period, the survival curve becomes a single exponential with the sensitivity of the less sensitive component. These results suggest a repair mechanism in mouse cells which operates more effectively if virus development is delayed.
A comparison of the rates of inactivation of the cytolytic and transforming abilities of Polyoma by ultraviolet light, X-rays, nitrous acid treatment, or the decay of incorporated P32, showed that the transforming ability has a target size roughly 60% of that of the plaque-forming ability. It is thus concluded that only a fraction of the viral genes are necessary for causing transformation.
The appearance of virus-specific RNA in productively infected mouse kidney cells has been followed by means of hybridization between pulse-labelled RNA from the infected cells and the purified virus DNA. The results show a sharp increase in the amount of virus-specific RNA around the time of virus DNA synthesis. The presence of a small amount of virus-specific RNA in virus-free transformed cells has also been shown. This result offers strong evidence for the persistence of at least part of the viral genome in transformed cells.