9 resultados para Chambers

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary organic aerosol (SOA) is produced in the atmosphere by oxidation of volatile organic compounds. Laboratory chambers are used understand the formation mechanisms and evolution of SOA formed under controlled conditions. This thesis presents studies of SOA formed from anthropogenic and biogenic precursors and discusses the effects of chamber walls on suspended vapors and particles.

During a chamber experiment, suspended vapors and particles can interact with the chamber walls. Particle wall loss is relatively well-understood, but vapor wall losses have received little study. Vapor wall loss of 2,3-epoxy-1,4-butanediol (BEPOX) and glyoxal was identified, quantified, and found to depend on chamber age and relative humidity.

Particles reside in the atmosphere for a week or more and can evolve chemically during that time period, a process termed aging. Simulating aging in laboratory chambers has proven to be challenging. A protocol was developed to extend the duration of a chamber experiment to 36 h of oxidation and was used to evaluate aging of SOA produced from m-xylene. Total SOA mass concentration increased and then decreased with increasing photooxidation suggesting a transition from functionalization to fragmentation chemistry driven by photochemical processes. SOA oxidation, measured as the bulk particle elemental oxygen-to-carbon ratio and fraction of organic mass at m/z 44, increased continuously starting after 5 h of photooxidation.

The physical state and chemical composition of an organic aerosol affect the mixing of aerosol components and its interactions with condensing species. A laboratory chamber protocol was developed to evaluate the mixing of SOA produced sequentially from two different sources by heating the chamber to induce particle evaporation. Using this protocol, SOA produced from toluene was found to be less volatile than that produced from a-pinene. When the two types of SOA were formed sequentially, the evaporation behavior most closely represented that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA particles resembles a core of SOA from the first precursor coated by a layer of SOA from the second precursor, indicative of limiting mixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions.

The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particle- phase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition.

Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0 – 4 h old. CO2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5 - 2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution.

Ground-based aerosol composition is reported for Pasadena, CA during the summer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol (LVOOA). The HOA/OA was only 0.08–0.23, indicating that most of Pasadena OA in the summer months is dominated by oxidized OA resulting from transported emissions that have undergone photochemistry and/or moisture-influenced processing, as apposed to only primary organic aerosol emissions. Airborne measurements and model predictions of aerosol composition are reported for the 2010 CalNex field campaign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner in which food and females promotes aggression.

In the first chapter, we explore how food controls aggression. As in many other species, food promotes aggression in flies, but it is not clear whether food increases aggression per se, or whether aggression is a secondary consequence of increased social interactions caused by aggregation of flies on food. Furthermore, nothing is known about how animals evaluate the quality and quantity of food in the context of competition. We show that food promotes aggression independently of any effect to increase the frequency of contact between males. Food increases aggression but not courtship between males, suggesting that the effect of food on aggression is specific. Next, we show that flies tune the level of aggression according to absolute amount of food rather than other parameters, such as area or concentration of food. Sucrose, a sugar molecule present in many fruits, is sufficient to promote aggression, and detection of sugar via gustatory receptor neurons is necessary for food-promoted aggression. Furthermore, we show that while food is necessary for aggression, too much food decreases aggression. Finally, we show that flies exhibit strategies consistent with a territorial strategy. These data suggest that flies use sweet-sensing gustatory information to guide their decision to fight over a limited quantity of a food resource.

Following up on the findings of the first chapter, we asked how the presence of a conspecific female resource promotes male-male aggression. In the absence of food, group-housed male flies, who normally do not fight even in the presence of food, fight in the presence of females. Unlike food, the presence of females strongly influences proximity between flies. Nevertheless, as group-housed flies do not fight even when they are in small chambers, it is unlikely that the presence of female indirectly increases aggression by first increasing proximity. Unlike food, the presence of females also leads to large increases in locomotion and in male-female courtship behaviors, suggesting that females may influence aggression as well as general arousal. Female cuticular hydrocarbons are required for this effect, as females that do not produce CH pheromones are unable to promote male-male aggression. In particular, 7,11-HD––a female-specific cuticular hydrocarbon pheromone critical for male-female courtship––is sufficient to mediate this effect when it is perfumed onto pheromone-deficient females or males. Recent studies showed that ppk23+ GRNs label two population of GRNs, one of which detects male cuticular hydrocarbons and another labeled by ppk23 and ppk25, which detects female cuticular hydrocarbons. I show that in particular, both of these GRNs control aggression, presumably via detection of female or male pheromones. To further investigate the ways in which these two classes of GRNs control aggression, I developed new genetic tools to independently test the male- and female-sensing GRNs. I show that ppk25-LexA and ppk25-GAL80 faithfully recapitulate the expression pattern of ppk25-GAL4 and label a subset of ppk23+ GRNs. These tools can be used in future studies to dissect the respective functions of male-sensing and female-sensing GRNs in male social behaviors.

Finally, in the last chapter, I discuss quantitative approaches to describe how varying quantities of food and females could control the level of aggression. Flies show an inverse-U shaped aggressive response to varying quantities of food and a flat aggressive response to varying quantities of females. I show how two simple game theoretic models, “prisoner’s dilemma” and “coordination game” could be used to describe the level of aggression we observe. These results suggest that flies may use strategic decision-making, using simple comparisons of costs and benefits.

In conclusion, male-male aggression in Drosophila is controlled by simple gustatory cues from food and females, which are detected by gustatory receptor neurons. Different quantities of resource cues lead to different levels of aggression, and flies show putative territorial behavior, suggesting that fly aggression is a highly strategic adaptive behavior. How these resource cues are integrated with male pheromone cues and give rise to this complex behavior is an interesting subject, which should keep researchers busy in the coming years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An array of two spark chambers and six trays of plastic scintillation counters was used to search for unaccompanied fractionally charged particles in cosmic rays near sea level. No acceptable events were found with energy losses by ionization between 0.04 and 0.7 that of unit-charged minimum-ionizing particles. New 90%-confidence upper limits were thereby established for the fluxes of fractionally charged particles in cosmic rays, namely, (1.04 ± 0.07)x10-10 and (2.03 ± 0.16)x10-10 cm-2sr-1sec-1 for minimum-ionizing particles with charges 1/3 and 2/3, respectively.

In order to be certain that the spark chambers could have functioned for the low levels of ionization expected from particles with small fractional charges, tests were conducted to estimate the efficiency of the chambers as they had been used in this experiment. These tests showed that the spark-chamber system with the track-selection criteria used might have been over 99% efficient for the entire range of energy losses considered.

Lower limits were then obtained for the mass of a quark by considering the above flux limits and a particular model for the production of quarks in cosmic rays. In this model, which is one involving the multi-peripheral Regge hypothesis, the production cross section and a corresponding mass limit are critically dependent on the Regge trajectory assigned to a quark. If quarks are "elementary'' with a flat trajectory, the mass of a quark can be expected to be at least 6 ± 2 BeV/c2. If quarks have a trajectory with unit slope, just as the existing hadrons do, the mass of a quark might be as small as 1.3 ± 0.2 BeV/c2. For a trajectory with unit slope and a mass larger than a couple of BeV/c2, the production cross section may be so low that quarks might never be observed in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first chapter of this thesis deals with automating data gathering for single cell microfluidic tests. The programs developed saved significant amounts of time with no loss in accuracy. The technology from this chapter was applied to experiments in both Chapters 4 and 5.

The second chapter describes the use of statistical learning to prognose if an anti-angiogenic drug (Bevacizumab) would successfully treat a glioblastoma multiforme tumor. This was conducted by first measuring protein levels from 92 blood samples using the DNA-encoded antibody library platform. This allowed the measure of 35 different proteins per sample, with comparable sensitivity to ELISA. Two statistical learning models were developed in order to predict whether the treatment would succeed. The first, logistic regression, predicted with 85% accuracy and an AUC of 0.901 using a five protein panel. These five proteins were statistically significant predictors and gave insight into the mechanism behind anti-angiogenic success/failure. The second model, an ensemble model of logistic regression, kNN, and random forest, predicted with a slightly higher accuracy of 87%.

The third chapter details the development of a photocleavable conjugate that multiplexed cell surface detection in microfluidic devices. The method successfully detected streptavidin on coated beads with 92% positive predictive rate. Furthermore, chambers with 0, 1, 2, and 3+ beads were statistically distinguishable. The method was then used to detect CD3 on Jurkat T cells, yielding a positive predictive rate of 49% and false positive rate of 0%.

The fourth chapter talks about the use of measuring T cell polyfunctionality in order to predict whether a patient will succeed an adoptive T cells transfer therapy. In 15 patients, we measured 10 proteins from individual T cells (~300 cells per patient). The polyfunctional strength index was calculated, which was then correlated with the patient's progress free survival (PFS) time. 52 other parameters measured in the single cell test were correlated with the PFS. No statistical correlator has been determined, however, and more data is necessary to reach a conclusion.

Finally, the fifth chapter talks about the interactions between T cells and how that affects their protein secretion. It was observed that T cells in direct contact selectively enhance their protein secretion, in some cases by over 5 fold. This occurred for Granzyme B, Perforin, CCL4, TNFa, and IFNg. IL- 10 was shown to decrease slightly upon contact. This phenomenon held true for T cells from all patients tested (n=8). Using single cell data, the theoretical protein secretion frequency was calculated for two cells and then compared to the observed rate of secretion for both two cells not in contact, and two cells in contact. In over 90% of cases, the theoretical protein secretion rate matched that of two cells not in contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction γ + p p + π+ + π- has been studied for photon energies between 800 and 1500 MeV and for dipion masses between 510 and 900 MeV. The bremsstrahlung beam from the Caltech synchrotron was passed through a liquid hydrogen target and spark chambers were used to detect the three final particles. In addition, the proton energy was determined by a range measurement. Approximately 40,000 photographs were taken, yielding 3018 acceptable events. The results were fit to an incoherent combination of the N*(1238) resonance, the po (750) resonance, and three-body phase space, with various models being tried for po production. The total cross section for po production is consistent with previous experiments. However, the angular dependence of the cross section is slightly more peaked in the forward direction, and the ratio of po production to phase space production is larger than previously observed.

However, since this experiment was only sensitive to the production angles cos θ cm ≥ .75, statistical fluctuations and/or an anisotropic distribution of background production have a severe influence on the po to background ratio. Of the po models tested, the results prefer po production by the one pion exchange mechanism with a very steep form factor dependence. The values of the mass and width of the po found here are consistent with previous experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time distribution of the decays of an initially pure K° beam into π+π-π° has been analyzed to determine the complex parameter W (also known as Ƞ+-° and (x + iy)). The K° beam was produced in a brass target by the interactions of a 2.85 GeV/c π- beam which was generated on an internal target in the Lawrence Radiation Laboratory (LRL) Bevatron. The counters and hodoscopes in the apparatus selected for events with a neutral (K°) produced in the brass target, two charged secondaries passing through a magnet spectrometer and a ɣ-ray shower in a shower hodoscope.

From the 275K apparatus triggers, 148 K → π+π-π° events were isolated. The presence of a ɣ-ray shower in the optical shower chambers and a two-prong vee in the optical spark chambers were devices used to isolate the events. The backgrounds were further reduced by reconstructing the momenta of the two charged secondaries and applying kinematic constraints.

The best fit to the final sample of 148 events distributed between .3 and 7.0 KS lifetimes gives:

ReW = -.05 ±.17

ImW = +.39 +.35/-.37

This result is consistent with both CPT invariance (ReW = 0) and CP invariance (W = 0). Backgrounds are estimated to be less than 10% and systematic effects have also been estimated to be negligible.

An analysis of the present data on CP violation in this decay mode and other K° decay modes has estimated the phase of ɛ to be 45.3 ± 2.3 degrees. This result is consistent with the super weak theories of CP violation which predicts the phase of ɛ to be 43°. This estimate is in turn used to predict the phase of Ƞ°° to be 48.0 ± 7.9 degrees. This is a substantial improvement on presently available measurements. The largest error in this analysis comes from the present limits on W from the world average of recent experiments. The K → πuʋ mode produces the next largest error. Therefore further experimentation in these modes would be useful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured differential cross-sections for the two-body photodisintegration of Helium-3, ɣ + He3 → p + d, between incident photon energies of 200 and 600 MeV, and for center of mass frame angles between 30° and 150°. Both final state particles were detected in arrays of wire spark chambers and scintillation counters; the high momentum particle was analyzed in a magnet spectrometer. The results are interpreted in terms of amplitudes to produce the ∆(1236) resonance in an intermediate state, as well as non-resonant amplitudes. This experiment, together with an (unfinished) experiment on the inverse reaction, p + d → He3 + ɣ, will provide a reciprocity test of time reversal invariance.