5 resultados para Cartesian Standpoint
em CaltechTHESIS
Resumo:
Two of the most important questions in mantle dynamics are investigated in three separate studies: the influence of phase transitions (studies 1 and 2), and the influence of temperature-dependent viscosity (study 3).
(1) Numerical modeling of mantle convection in a three-dimensional spherical shell incorporating the two major mantle phase transitions reveals an inherently three-dimensional flow pattern characterized by accumulation of cold downwellings above the 670 km discontinuity, and cylindrical 'avalanches' of upper mantle material into the lower mantle. The exothermic phase transition at 400 km depth reduces the degree of layering. A region of strongly-depressed temperature occurs at the base of the mantle. The temperature field is strongly modulated by this partial layering, both locally and in globally-averaged diagnostics. Flow penetration is strongly wavelength-dependent, with easy penetration at long wavelengths but strong inhibition at short wavelengths. The amplitude of the geoid is not significantly affected.
(2) Using a simple criterion for the deflection of an upwelling or downwelling by an endothermic phase transition, the scaling of the critical phase buoyancy parameter with the important lengthscales is obtained. The derived trends match those observed in numerical simulations, i.e., deflection is enhanced by (a) shorter wavelengths, (b) narrower up/downwellings (c) internal heating and (d) narrower phase loops.
(3) A systematic investigation into the effects of temperature-dependent viscosity on mantle convection has been performed in three-dimensional Cartesian geometry, with a factor of 1000-2500 viscosity variation, and Rayleigh numbers of 10^5-10^7. Enormous differences in model behavior are found, depending on the details of rheology, heating mode, compressibility and boundary conditions. Stress-free boundaries, compressibility, and temperature-dependent viscosity all favor long-wavelength flows, even in internally heated cases. However, small cells are obtained with some parameter combinations. Downwelling plumes and upwelling sheets are possible when viscosity is dependent solely on temperature. Viscous dissipation becomes important with temperature-dependent viscosity.
The sensitivity of mantle flow and structure to these various complexities illustrates the importance of performing mantle convection calculations with rheological and thermodynamic properties matching as closely as possible those of the Earth.
Resumo:
On the materials scale, thermoelectric efficiency is defined by the dimensionless figure of merit zT. This value is made up of three material components in the form zT = Tα2/ρκ, where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the total thermal conductivity. Therefore, in order to improve zT would require the reduction of κ and ρ while increasing α. However due to the inter-relation of the electrical and thermal properties of materials, typical routes to thermoelectric enhancement come in one of two forms. The first is to isolate the electronic properties and increase α without negatively affecting ρ. Techniques like electron filtering, quantum confinement, and density of states distortions have been proposed to enhance the Seebeck coefficient in thermoelectric materials. However, it has been difficult to prove the efficacy of these techniques. More recently efforts to manipulate the band degeneracy in semiconductors has been explored as a means to enhance α.
The other route to thermoelectric enhancement is through minimizing the thermal conductivity, κ. More specifically, thermal conductivity can be broken into two parts, an electronic and lattice term, κe and κl respectively. From a functional materials standpoint, the reduction in lattice thermal conductivity should have a minimal effect on the electronic properties. Most routes incorporate techniques that focus on the reduction of the lattice thermal conductivity. The components that make up κl (κl = 1/3Cνl) are the heat capacity (C), phonon group velocity (ν), and phonon mean free path (l). Since the difficulty is extreme in altering the heat capacity and group velocity, the phonon mean free path is most often the source of reduction.
Past routes to decreasing the phonon mean free path has been by alloying and grain size reduction. However, in these techniques the electron mobility is often negatively affected because in alloying any perturbation to the periodic potential can cause additional adverse carrier scattering. Grain size reduction has been another successful route to enhancing zT because of the significant difference in electron and phonon mean free paths. However, grain size reduction is erratic in anisotropic materials due to the orientation dependent transport properties. However, microstructure formation in both equilibrium and nonequilibrium processing routines can be used to effectively reduce the phonon mean free path as a route to enhance the figure of merit.
This work starts with a discussion of several different deliberate microstructure varieties. Control of the morphology and finally structure size and spacing is discussed at length. Since the material example used throughout this thesis is anisotropic a short primer on zone melting is presented as an effective route to growing homogeneous and oriented polycrystalline material. The resulting microstructure formation and control is presented specifically in the case of In2Te3-Bi2Te3 composites and the transport properties pertinent to thermoelectric materials is presented. Finally, the transport and discussion of iodine doped Bi2Te3 is presented as a re-evaluation of the literature data and what is known today.
Resumo:
Understanding the origin of life on Earth has long fascinated the minds of the global community, and has been a driving factor in interdisciplinary research for centuries. Beyond the pioneering work of Darwin, perhaps the most widely known study in the last century is that of Miller and Urey, who examined the possibility of the formation of prebiotic chemical precursors on the primordial Earth [1]. More recent studies have shown that amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth, are present in meteoritic samples, and that the molecules extracted from the meteorites display isotopic signatures indicative of an extraterrestrial origin [2]. The most recent major discovery in this area has been the detection of glycine (NH2CH2COOH), the simplest amino acid, in pristine cometary samples returned by the NASA STARDUST mission [3]. Indeed, the open questions left by these discoveries, both in the public and scientific communities, hold such fascination that NASA has designated the understanding of our "Cosmic Origins" as a key mission priority.
Despite these exciting discoveries, our understanding of the chemical and physical pathways to the formation of prebiotic molecules is woefully incomplete. This is largely because we do not yet fully understand how the interplay between grain-surface and sub-surface ice reactions and the gas-phase affects astrophysical chemical evolution, and our knowledge of chemical inventories in these regions is incomplete. The research presented here aims to directly address both these issues, so that future work to understand the formation of prebiotic molecules has a solid foundation from which to work.
From an observational standpoint, a dedicated campaign to identify hydroxylamine (NH2OH), potentially a direct precursor to glycine, in the gas-phase was undertaken. No trace of NH2OH was found. These observations motivated a refinement of the chemical models of glycine formation, and have largely ruled out a gas-phase route to the synthesis of the simplest amino acid in the ISM. A molecular mystery in the case of the carrier of a series of transitions was resolved using observational data toward a large number of sources, confirming the identity of this important carbon-chemistry intermediate B11244 as l-C3H+ and identifying it in at least two new environments. Finally, the doubly-nitrogenated molecule carbodiimide HNCNH was identified in the ISM for the first time through maser emission features in the centimeter-wavelength regime.
In the laboratory, a TeraHertz Time-Domain Spectrometer was constructed to obtain the experimental spectra necessary to search for solid-phase species in the ISM in the THz region of the spectrum. These investigations have shown a striking dependence on large-scale, long-range (i.e. lattice) structure of the ices on the spectra they present in the THz. A database of molecular spectra has been started, and both the simplest and most abundant ice species, which have already been identified, as well as a number of more complex species, have been studied. The exquisite sensitivity of the THz spectra to both the structure and thermal history of these ices may lead to better probes of complex chemical and dynamical evolution in interstellar environments.
Resumo:
The microscopic properties of a two-dimensional model dense fluid of Lennard-Jones disks have been studied using the so-called "molecular dynamics" method. Analyses of the computer-generated simulation data in terms of "conventional" thermodynamic and distribution functions verify the physical validity of the model and the simulation technique.
The radial distribution functions g(r) computed from the simulation data exhibit several subsidiary features rather similar to those appearing in some of the g(r) functions obtained by X-ray and thermal neutron diffraction measurements on real simple liquids. In the case of the model fluid, these "anomalous" features are thought to reflect the existence of two or more alternative configurations for local ordering.
Graphical display techniques have been used extensively to provide some intuitive insight into the various microscopic phenomena occurring in the model. For example, "snapshots" of the instantaneous system configurations for different times show that the "excess" area allotted to the fluid is collected into relatively large, irregular, and surprisingly persistent "holes". Plots of the particle trajectories over intervals of 2.0 to 6.0 x 10-12 sec indicate that the mechanism for diffusion in the dense model fluid is "cooperative" in nature, and that extensive diffusive migration is generally restricted to groups of particles in the vicinity of a hole.
A quantitative analysis of diffusion in the model fluid shows that the cooperative mechanism is not inconsistent with the statistical predictions of existing theories of singlet, or self-diffusion in liquids. The relative diffusion of proximate particles is, however, found to be retarded by short-range dynamic correlations associated with the cooperative mechanism--a result of some importance from the standpoint of bimolecular reaction kinetics in solution.
A new, semi-empirical treatment for relative diffusion in liquids is developed, and is shown to reproduce the relative diffusion phenomena observed in the model fluid quite accurately. When incorporated into the standard Smoluchowski theory of diffusion-controlled reaction kinetics, the more exact treatment of relative diffusion is found to lower the predicted rate of reaction appreciably.
Finally, an entirely new approach to an understanding of the liquid state is suggested. Our experience in dealing with the simulation data--and especially, graphical displays of the simulation data--has led us to conclude that many of the more frustrating scientific problems involving the liquid state would be simplified considerably, were it possible to describe the microscopic structures characteristic of liquids in a concise and precise manner. To this end, we propose that the development of a formal language of partially-ordered structures be investigated.
Resumo:
In this thesis, a collection of novel numerical techniques culminating in a fast, parallel method for the direct numerical simulation of incompressible viscous flows around surfaces immersed in unbounded fluid domains is presented. At the core of all these techniques is the use of the fundamental solutions, or lattice Green’s functions, of discrete operators to solve inhomogeneous elliptic difference equations arising in the discretization of the three-dimensional incompressible Navier-Stokes equations on unbounded regular grids. In addition to automatically enforcing the natural free-space boundary conditions, these new lattice Green’s function techniques facilitate the implementation of robust staggered-Cartesian-grid flow solvers with efficient nodal distributions and fast multipole methods. The provable conservation and stability properties of the appropriately combined discretization and solution techniques ensure robust numerical solutions. Numerical experiments on thin vortex rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical fidelity, and computational efficiency of the present formulations.