2 resultados para CRYSTAL ENGINEERING

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meeting the world's growing energy demands while protecting our fragile environment is a challenging issue. Second generation biofuels are liquid fuels like long-chain alcohols produced from lignocellulosic biomass. To reduce the cost of biofuel production, we engineered fungal family 6 cellobiohydrolases (Cel6A) for enhanced thermostability using random mutagenesis and recombination of beneficial mutations. During long-time hydrolysis, engineered thermostable cellulases hydrolyze more sugars than wild-type Cel6A as single enzymes and binary mixtures at their respective optimum temperatures. Engineered thermostable cellulases exhibit synergy in binary mixtures similar to wild-type cellulases, demonstrating the utility of engineering individual cellulases to produce novel thermostable mixtures. Crystal structures of the engineered thermostable cellulases indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by proline substitutions. At high temperature, free cysteines contribute to irreversible thermal inactivation in engineered thermostable Cel6A and wild-type Cel6A. The mechanism of thermal inactivation in this cellulase family is consistent with disulfide bond degradation and thiol-disulfide exchange. Enhancing the thermostability of Cel6A also increases tolerance to pretreatment chemicals, demonstrated by the strong correlation between thermostability and tolerance to 1-ethyl-3-methylimidazolium acetate. Several semi-rational protein engineering approaches – on the basis of consensus sequence analysis, proline stabilization, FoldX energy calculation, and high B-factors – were evaluated to further enhance the thermostability of Cel6A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The creation of novel enzyme activity is a great challenge to protein engineers, but nature has done so repeatedly throughout the process of natural selection. I begin by outlining the multitude of distinct reactions catalyzed by a single enzyme class, cytochrome P450 monooxygenases. I discuss the ability of cytochrome P450 to generate reactive intermediates capable of diverse reactivity, suggesting this enzyme can also be used to generate novel reactive intermediates in the form of metal-carbenoid and nitrenoid species. I then show that cytochrome P450 from Bacillus megaterium (P450BM3) and its isolated cofactor can catalyze metal-nitrenoid transfer in the form of intramolecular C–H bond amination. Mutations to the protein sequence can enhance the reactivity and selectivity of this transformation significantly beyond that of the free cofactor. Next, I demonstrate an intermolecular nitrene transfer reaction catalyzed by P450BM3 in the form of sulfide imidation. Understanding that sulfur heteroatoms are strong nucleophiles, I show that increasing the sulfide nucleophilicity through substituents on the aryl sulfide ring can dramatically increase reaction productivity. To explore engineering nitrenoid transfer in P450BM3, active site mutagenesis is employed to tune the regioselectivity intramolecular C–H amination catalysts. The solution of the crystal structure of a highly selective variant demonstrates that hydrophobic residues in the active site strongly modulate reactivity and regioselectivity. Finally, I use a similar strategy to develop P450-based catalysts for intermolecular olefin aziridination, demonstrating that active site mutagenesis can greatly enhance this nitrene transfer reaction. The resulting variant can catalyze intermolecular aziridination with more than 1000 total turnovers and enantioselectivity of up to 99% ee.