26 resultados para CMBR detectors

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Daya Bay Reactor Antineutrino Experiment observed the disappearance of reactor $\bar{\nu}_e$ from six $2.9~GW_{th}$ reactor cores in Daya Bay, China. The Experiment consists of six functionally identical $\bar{\nu}_e$ detectors, which detect $\bar{\nu}_e$ by inverse beta decay using a total of about 120 metric tons of Gd-loaded liquid scintillator as the target volume. These $\bar{\nu}_e$ detectors were installed in three underground experimental halls, two near halls and one far hall, under the mountains near Daya Bay, with overburdens of 250 m.w.e, 265 m.w.e and 860 m.w.e. and flux-weighted baselines of 470 m, 576 m and 1648 m. A total of 90179 $\bar{\nu}_e$ candidates were observed in the six detectors over a period of 55 days, 57549 at the Daya Bay near site, 22169 at the Ling Ao near site and 10461 at the far site. By performing a rate-only analysis, the value of $sin^2 2\theta_{13}$ was determined to be $0.092 \pm 0.017$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We know from the CMB and observations of large-scale structure that the universe is extremely flat, homogenous, and isotropic. The current favored mechanism for generating these characteristics is inflation, a theorized period of exponential expansion of the universe that occurred shortly after the Big Bang. Most theories of inflation generically predict a background of stochastic gravitational waves. These gravitational waves should leave their unique imprint on the polarization of the CMB via Thompson scattering. Scalar perturbations of the metric will cause a pattern of polarization with no curl (E-mode). Tensor perturbations (gravitational waves) will cause a unique pattern of polarization on the CMB that includes a curl component (B-mode). A measurement of the ratio of the tensor to scalar perturbations (r) tells us the energy scale of inflation. Recent measurements by the BICEP2 team detect the B-mode spectrum with a tensor-to-scalar ratio of r = 0.2 (+0.05, −0.07). An independent confirmation of this result is the next step towards understanding the inflationary universe.

This thesis describes my work on a balloon-borne polarimeter called SPIDER, which is designed to illuminate the physics of the early universe through measurements of the cosmic microwave background polarization. SPIDER consists of six single-frequency, on-axis refracting telescopes contained in a shared-vacuum liquid-helium cryostat. Its large format arrays of millimeter-wave detectors and tight control of systematics will give it unprecedented sensitivity. This thesis describes how the SPIDER detectors are characterized and calibrated for flight, as well as how the systematics requirements for the SPIDER system are simulated and measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LIGO and Virgo gravitational-wave observatories are complex and extremely sensitive strain detectors that can be used to search for a wide variety of gravitational waves from astrophysical and cosmological sources. In this thesis, I motivate the search for the gravitational wave signals from coalescing black hole binary systems with total mass between 25 and 100 solar masses. The mechanisms for formation of such systems are not well-understood, and we do not have many observational constraints on the parameters that guide the formation scenarios. Detection of gravitational waves from such systems — or, in the absence of detection, the tightening of upper limits on the rate of such coalescences — will provide valuable information that can inform the astrophysics of the formation of these systems. I review the search for these systems and place upper limits on the rate of black hole binary coalescences with total mass between 25 and 100 solar masses. I then show how the sensitivity of this search can be improved by up to 40% by the the application of the multivariate statistical classifier known as a random forest of bagged decision trees to more effectively discriminate between signal and non-Gaussian instrumental noise. I also discuss the use of this classifier in the search for the ringdown signal from the merger of two black holes with total mass between 50 and 450 solar masses and present upper limits. I also apply multivariate statistical classifiers to the problem of quantifying the non-Gaussianity of LIGO data. Despite these improvements, no gravitational-wave signals have been detected in LIGO data so far. However, the use of multivariate statistical classification can significantly improve the sensitivity of the Advanced LIGO detectors to such signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LIGO gravitational wave detectors are on the brink of making the first direct detections of gravi- tational waves. Noise cancellation techniques are described, in order to simplify the commissioning of these detectors as well as significantly improve their sensitivity to astrophysical sources. Future upgrades to the ground based detectors will require further cancellation of Newtonian gravitational noise in order to make the transition from detectors striving to make the first direct detection of gravitational waves, to observatories extracting physics from many, many detections. Techniques for this noise cancellation are described, as well as the work remaining in this realm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The material presented in this thesis concerns the growth and characterization of III-V semiconductor heterostructures. Studies of the interactions between bound states in coupled quantum wells and between well and barrier bound states in AlAs/GaAs heterostructures are presented. We also demonstrate the broad array of novel tunnel structures realizable in the InAs/GaSb/AlSb material system. Because of the unique broken-gap band alignment of InAs/GaSb these structures involve transport between the conduction- and valence-bands of adjacent layers. These devices possess a wide range of electrical properties and are fundamentally different from conventional AlAs/GaAs tunnel devices. We report on the fabrication of a novel tunnel transistor with the largest reported room temperature current gains. We also present time-resolved studies of the growth fronts of InAs/GainSb strained layer superlattices and investigations of surface anion exchange reactions.

Chapter 2 covers tunneling studies of conventional AlAs/GaAs RTD's. The results of two studies are presented: (i) A test of coherent vs. sequential tunneling in triple barrier heterostructures, (ii) An optical measurement of the effect of barrier X-point states on Γ-point well states. In the first it was found if two quantum wells are separated by a sufficiently thin barrier, then the eigenstates of the system extend coherently across both wells and the central barriers. For thicker barriers between the wells, the electrons become localized in the individual wells and transport is best described by the electrons hopping between the wells. In the second, it was found that Γ-point well states and X-point barrier states interact strongly. The barrier X-point states modify the energies of the well states and increase the escape rate for carriers in the quantum well.

The results of several experimental studies of a novel class of tunnel devices realized in the InAs/GaSb/AlSb material system are presented in Chapter 3. These interband tunnel structures involve transport between conduction- and valence-band states in adjacent material layers. These devices are compared and contrasted with the conventional AlAs/GaAs structures discussed in Chapter 2 and experimental results are presented for both resonant and nonresonant devices. These results are compared with theoretical simulations and necessary extensions to the theoretical models are discussed.

In chapter 4 experimental results from a novel tunnel transistor are reported. The measured current gains in this transistor exceed 100 at room temperature. This is the highest reported gain at room temperature for any tunnel transistor. The device is analyzed and the current conduction and gain mechanisms are discussed.

Chapters 5 and 6 are studies of the growth of structures involving layers with different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for far infrared detectors and time resolved, in-situ studies of their growth fronts. It was found that the bandgap of superlattices with identical layer thicknesses and compositions varied by as much as 40 meV depending on how their internal interfaces are formed. The absorption lengths in superlattices with identical bandgaps but whose interfaces were formed in different ways varied by as much as a factor of two. First the superlattice is discussed including an explanation of the device and the complications involved in its growth. The experimental technique of reflection high energy electron diffraction (RHEED) is reviewed, and the results of RHEED studies of the growth of these complicated structures are presented. The development of a time resolved, in-situ characterization of the internal interfaces of these superlattices is described. Chapter 6 describes the result of a detailed study of some of the phenomena described in chapter 5. X-ray photoelectron spectroscopy (XPS) studies of anion exchange reactions on the growth fronts of these superlattices are reported. Concurrent RHEED studies of the same physical systems studied with XPS are presented. Using the RHEED and XPS results, a real-time, indirect measurement of surface exchange reactions was developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.

Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.

In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.

The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galaxy clusters are the largest gravitationally bound objects in the observable universe, and they are formed from the largest perturbations of the primordial matter power spectrum. During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic component is heated as it passes through accretion shocks. This process stabilizes when the pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are useful cosmological probes, because their formation progressively freezes out at the epoch when dark energy begins to dominate the expansion and energy density of the universe. A diverse set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters, and this is useful for self-calibration. The distributions of these observables trace a cluster's dark matter halo, which represents more than 80% of the cluster's gravitational potential. One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized intercluster medium blueshifts the cosmic microwave background via Compton scattering. Great technical advances in the last several decades have made regular observation of the SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from the construction of large-format camera arrays consisting of highly sensitive millimeter-wave detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and 268 GHz radiation, located at one of the best observing sites in the world: the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original spider web NTD bolometers used in an entire generation of ground-based, balloon-borne, and satellite-borne millimeter wave instrumention. Over approximately six years, our group at Caltech has developed a mature galaxy cluster observational program with Bolocam. This thesis describes the construction of the instrument's full cluster catalog: BOXSZ. Using this catalog, I have scaled the Bolocam SZE measurements with X-ray mass approximations in an effort to characterize the SZE signal as a viable mass probe for cosmology. This work has confirmed the SZE to be a low-scatter tracer of cluster mass. The analysis has also revealed how sensitive the SZE-mass scaling is to small biases in the adopted mass approximation. Future Bolocam analysis efforts are set on resolving these discrepancies by approximating cluster mass jointly with different observational probes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the most exciting developments in the field of nucleic acid engineering include the utilization of synthetic nucleic acid molecular devices as gene regulators, as disease marker detectors, and most recently, as therapeutic agents. The common thread between these technologies is their reliance on the detection of specific nucleic acid input markers to generate some desirable output, such as a change in the copy number of an mRNA (for gene regulation), a change in the emitted light intensity (for some diagnostics), and a change in cell state within an organism (for therapeutics). The research presented in this thesis likewise focuses on engineering molecular tools that detect specific nucleic acid inputs, and respond with useful outputs.

Four contributions to the field of nucleic acid engineering are presented: (1) the construction of a single nucleotide polymorphism (SNP) detector based on the mechanism of hybridization chain reaction (HCR); (2) the utilization of a single-stranded oligonucleotide molecular Scavenger as a means of enhancing HCR selectivity; (3) the implementation of Quenched HCR, a technique that facilitates transduction of a nucleic acid chemical input into an optical (light) output, and (4) the engineering of conditional probes that function as sequence transducers, receiving target signal as input and providing a sequence of choice as output. These programmable molecular systems are conceptually well-suited for performing wash-free, highly selective rapid genotyping and expression profiling in vitro, in situ, and potentially in living cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the design and implementation of a situation awareness application. The application gathers data from sensors including accelerometers for monitoring earthquakes, carbon monoxide sensors for monitoring fires, radiation detectors, and dust sensors. The application also gathers Internet data sources including data about traffic congestion on daily commute routes, information about hazards, news relevant to the user of the application, and weather. The application sends the data to a Cloud computing service which aggregates data streams from multiple sites and detects anomalies. Information from the Cloud service is then displayed by the application on a tablet, computer monitor, or television screen. The situation awareness application enables almost all members of a community to remain aware of critical changes in their environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors, one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is described and analyzed in Chapter 2. This design (due to Braginsky, Gorodetsky, Khalili, and Thorne) is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and used to show (in accord with the speed being a quantum nondemolition observable) that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies . However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation.

Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires only a modest input power and appears to be a fully practical candidate for third-generation LIGO. It can beat the SQL (the approximate sensitivity of second-generation LIGO interferometers) over a broad range of frequencies (~ 10 to 100 Hz in practice) by a factor h/hSQL ~ √W^(SQL)_(circ)/Wcirc. Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz (the LIGO-II power). If squeezed vacuum (with a power-squeeze factor e-2R) is injected into the interferometer's output port, the SQL can be beat with a much reduced laser power: h/hSQL ~ √W^(SQL)_(circ)/Wcirce-2R. For realistic parameters (e-2R ≃ 10 and Wcirc ≃ 800 to 2000 kW), the SQL can be beat by a factor ~ 3 to 4 from 10 to 100 Hz. [However, as the power increases in these expressions, the speed meter becomes more narrow band; additional power and re-optimization of some parameters are required to maintain the wide band.] By performing frequency-dependent homodyne detection on the output (with the aid of two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz.

Chapters 2 and 3 are part of an ongoing effort to develop a practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising third- generation interferometric gravitational-wave detector that entails low laser power.

Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves for LIGO. Specifically, it presents an analysis of the tidal work done on a self-gravitating body (e.g., a neutron star or black hole) in an external tidal field (e.g., that of a binary companion). The change in the mass-energy of the body as a result of the tidal work, or "tidal heating," is analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interaction energy contained within the body's local asymptotic rest frame is gauge dependent. This is analogous to Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy, but the work done on the body is independent of that localization. These conclusions play a role in analyses, by others, of the dynamics and stability of the inspiraling neutron-star binaries whose gravitational waves are likely to be seen and studied by LIGO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we describe a system that tracks fruit flies in video and automatically detects and classifies their actions. We introduce Caltech Fly-vs-Fly Interactions, a new dataset that contains hours of video showing pairs of fruit flies engaging in social interactions, and is published with complete expert annotations and articulated pose trajectory features. We compare experimentally the value of a frame-level feature representation with the more elaborate notion of bout features that capture the structure within actions. Similarly, we compare a simple sliding window classifier architecture with a more sophisticated structured output architecture, and find that window based detectors outperform the much slower structured counterparts, and approach human performance. In addition we test the top performing detector on the CRIM13 mouse dataset, finding that it matches the performance of the best published method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal noise arising from mechanical loss in high reflective dielectric coatings is a significant source of noise in precision optical measurements. In particular, Advanced LIGO, a large scale interferometer aiming to observed gravitational wave, is expected to be limited by coating thermal noise in the most sensitive region around 30–300 Hz. Various theoretical calculations for predicting coating Brownian noise have been proposed. However, due to the relatively limited knowledge of the coating material properties, an accurate approximation of the noise cannot be achieved. A testbed that can directly observed coating thermal noise close to Advanced LIGO band will serve as an indispensable tool to verify the calculations, study material properties of the coating, and estimate the detector’s performance.

This dissertation reports a setup that has sensitivity to observe wide band (10Hz to 1kHz) thermal noise from fused silica/tantala coating at room temperature from fixed-spacer Fabry–Perot cavities. Important fundamental noises and technical noises associated with the setup are discussed. The coating loss obtained from the measurement agrees with results reported in the literature. The setup serves as a testbed to study thermal noise in high reflective mirrors from different materials. One example is a heterostructure of AlxGa1−xAs (AlGaAs). An optimized design to minimize thermo–optic noise in the coating is proposed and discussed in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the measurement of the Higgs Boson decaying into two photons the parametrization of an appropriate background model is essential for fitting the Higgs signal mass peak over a continuous background. This diphoton background modeling is crucial in the statistical process of calculating exclusion limits and the significance of observations in comparison to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical shape for the background mass distribution as the use of an improper function can lead to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a fitting model from the data. We then implement a multi-model inference ranking method to build a fit-model that closest represents the Standard Model background in 2013 diphoton data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). Potential applications and extensions of this model-selection technique are discussed with reference to CMS detector performance measurements as well as in potential physics analyses at future detectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the development of low-noise heterodyne receivers at THz frequencies for submillimeter astronomy using Nb-based superconductor-insulator-superconductor (SIS) tunneling junctions. The mixers utilize a quasi-optical configuration which consists of a planar twin-slot antenna and antisymmetrically-fed two-junctions on an antireflection-coated silicon hyperhemispherical lens. On-chip integrated tuning circuits, in the form of microstrip lines, are used to obtain maximum coupling efficiency in the designed frequency band. To reduce the rf losses in the integrated tuning circuits above the superconducting Nb gap frequency (~ 700 GHz), normal-metal Al is used to replace Nb as the tuning circuits.

To account the rf losses in the micros trip lines, we calculated the surface impedance of the AI films using the nonlocal anomalous skin effect for finite thickness films. Nb films were calculated using the Mattis-Bardeen theory in the extreme anomalous limit. Our calculations show that the losses of the Al and Nb microstrip lines are about equal at 830 GHz. For Al-wiring and Nb-wiring mixers both optimized at 1050 GHz, the RF coupling efficiency of Al-wiring mixer is higher than that of Nb-wiring one by almost 50%. We have designed both Nb-wiring and Al-wiring mixers below and above the gap frequency.

A Fourier transform spectrometer (FTS) has been constructed especially for the study of the frequency response of SIS receivers. This FTS features large aperture size (10 inch) and high frequency resolution (114 MHz). The FTS spectra, obtained using the SIS receivers as direct detectors on the FTS, agree quite well with our theoretical simulations. We have also, for the first time, measured the FTS heterodyne response of an SIS mixer at sufficiently high resolution to resolve the LO and the sidebands. Heterodyne measurements of our SIS receivers with Nb-wiring or Al-wiring have yielded results which arc among the best reported to date for broadband heterodyne receivers. The Nb-wiring mixers, covering 400 - 850 GHz band with four separate fixed-tuned mixers, have uncorrected DSB receiver noise temperature around 5hv/kb to 700 GHz, and better than 540 K at 808 GHz. An Al-wiring mixer designed for 1050 GHz band has an uncorrected DSB receiver noise temperature 840 K at 1042 GHz and 2.5 K bath temperature. Mixer performance analysis shows that Nb junctions can work well up to twice the gap frequency and the major cause of loss above the gap frequency is the rf losses in the microstrip tuning structures. Further advances in THz SIS mixers may be possible using circuits fabricated with higher-gap superconductors such as NbN. However, this will require high-quality films with low RF surface resistance at THz frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isotopic composition of hydrogen and helium in solar cosmic rays provides a means of studying solar flare particle acceleration mechanisms since the enhanced relative abundance of rare isotopes, such as 2H, 3H and 3He, is due to their production by inelastic nuclear collisions in the solar atmosphere during the flare. In this work the Caltech Electron/Isotope Spectrometer on the IMP-7 spacecraft has been used to measure this isotopic composition. The response of the dE/dx-E particle telescope is discussed and alpha particle channeling in thin detectors is identified as an important background source affecting measurement of low values of (3He/4He).

The following flare-averaged results are obtained for the period, October, 1972 - November, 1973: (2H/1H) = 7+10-6 X 10-6 (1.6 - 8.6 MeV/nuc), (3H/1H) less than 3.4 x 10-6 (1.2 - 6.8 MeV/nuc), (3He/4He) = (9 ± 4) x 10-3, (3He/1H) = (1.7 ± 0.7) x 10-4 (3.1 - 15.0 MeV/nuc). The deuterium and tritium ratios are significantly lower than the same ratios at higher energies, suggesting that the deuterium and tritium spectra are harder than that of the protons. They are, however, consistent with the same thin target model relativistic path length of ~ 1 g/cm2 (or equivalently ~ 0.3 g/cm2 at 30 MeV/nuc) which is implied by the higher energy results. The 3He results, consistent with previous observations, would imply a path length at least 3 times as long, but the observations may be contaminated by small 3He rich solar events.

During 1973 three "3He rich events," containing much more 3He than 2H or 3H were observed on 14 February, 29 June and 5 September. Although the total production cross sections for 2H,3H and 3He are comparable, an upper limit to (2H/3He) and (3H/3He) was 0.053 (2.9-6.8 MeV/nuc), summing over the three events. This upper limit is marginally consistent with Ramaty and Kozlovsky's thick target model which accounts for such events by the nuclear reaction kinematics and directional properties of the flare acceleration process. The 5 September event was particularly significant in that much more 3He was observed than 4He and the fluxes of 3He and 1H were about equal. The range of (3He/4He) for such events reported to date is 0.2 to ~ 6 while (3He/1H) extends from 10-3 to ~ 1. The role of backscattered and mirroring protons and alphas in accounting for such variations is discussed.