5 resultados para C-(60)
em CaltechTHESIS
Resumo:
The concept of a "projection function" in a finite-dimensional real or complex normed linear space H (the function PM which carries every element into the closest element of a given subspace M) is set forth and examined.
If dim M = dim H - 1, then PM is linear. If PN is linear for all k-dimensional subspaces N, where 1 ≤ k < dim M, then PM is linear.
The projective bound Q, defined to be the supremum of the operator norm of PM for all subspaces, is in the range 1 ≤ Q < 2, and these limits are the best possible. For norms with Q = 1, PM is always linear, and a characterization of those norms is given.
If H also has an inner product (defined independently of the norm), so that a dual norm can be defined, then when PM is linear its adjoint PMH is the projection on (kernel PM)⊥ by the dual norm. The projective bounds of a norm and its dual are equal.
The notion of a pseudo-inverse F+ of a linear transformation F is extended to non-Euclidean norms. The distance from F to the set of linear transformations G of lower rank (in the sense of the operator norm ∥F - G∥) is c/∥F+∥, where c = 1 if the range of F fills its space, and 1 ≤ c < Q otherwise. The norms on both domain and range spaces have Q = 1 if and only if (F+)+ = F for every F. This condition is also sufficient to prove that we have (F+)H = (FH)+, where the latter pseudo-inverse is taken using dual norms.
In all results, the real and complex cases are handled in a completely parallel fashion.
Resumo:
The ability to sense mechanical force is vital to all organisms to interact with and respond to stimuli in their environment. Mechanosensation is critical to many physiological functions such as the senses of hearing and touch in animals, gravitropism in plants and osmoregulation in bacteria. Of these processes, the best understood at the molecular level involve bacterial mechanosensitive channels. Under hypo-osmotic stress, bacteria are able to alleviate turgor pressure through mechanosensitive channels that gate directly in response to tension in the membrane lipid bilayer. A key participant in this response is the mechanosensitive channel of large conductance (MscL), a non-selective channel with a high conductance of ~3 nS that gates at tensions close to the membrane lytic tension.
It has been appreciated since the original discovery by C. Kung that the small subunit size (~130 to 160 residues) and the high conductance necessitate that MscL forms a homo-oligomeric channel. Over the past 20 years of study, the proposed oligomeric state of MscL has ranged from monomer to hexamer. Oligomeric state has been shown to vary between MscL homologues and is influenced by lipid/detergent environment. In this thesis, we report the creation of a chimera library to systematically survey the correlation between MscL sequence and oligomeric state to identify the sequence determinants of oligomeric state. Our results demonstrate that although there is no combination of sequences uniquely associated with a given oligomeric state (or mixture of oligomeric states), there are significant correlations. In the quest to characterize the oligomeric state of MscL, an exciting discovery was made about the dynamic nature of the MscL complex. We found that in detergent solution, under mild heating conditions (37 °C – 60 °C), subunits of MscL can exchange between complexes, and the dynamics of this process are sensitive to the protein sequence.
Extensive efforts were made to produce high diffraction quality crystals of MscL for the determination of a high resolution X-ray crystal structure of a full length channel. The surface entropy reduction strategy was applied to the design of S. aureus MscL variants and while the strategy appears to have improved the crystallizability of S. aureus MscL, unfortunately the diffraction qualities of these crystals were not significantly improved. MscL chimeras were also screened for crystallization in various solubilization detergents, but also failed to yield high quality crystals.
MscL is a fascinating protein and continues to serve as a model system for the study of the structural and functional properties of mechanosensitive channels. Further characterization of the MscL chimera library will offer more insight into the characteristics of the channel. Of particular interest are the functional characterization of the chimeras and the exploration of the physiological relevance of intercomplex subunit exchange.
Resumo:
Redox-active ruthenium complexes have been covalently attached to the surface of a series of natural, semisynthetic and recombinant cytochromes c. The protein derivatives were characterized by a variety of spectroscopic techniques. Distant Fe^(2+) - Ru^(3+) electronic couplings were extracted from intramolecular electron-transfer rates in Ru(bpy)_2(im)HisX (where X= 33, 39, 62, and 72) derivatives of cyt c. The couplings increase according to 62 (0.0060) < 72 (0.057) < 33 (0.097) < 39 (0.11 cm^(-1)); however, this order is incongruent with histidine to heme edge-edge distances [62 (14.8) > 39 (12.3) > 33 (11.1) > =72 (8.4 Å)]. These results suggest the chemical nature of the intervening medium needs to be considered for a more precise evaluation of couplings. The rates (and couplings) correlate with the lengths of a-tunneling pathways comprised of covalent bonds, hydrogen bonds and through-space jumps from the histidines to the heme group. Space jumps greatly decrease couplings: one from Pro71 to Met80 extends the σ-tunneling length of the His72 pathway by roughly 10 covalent bond units. Experimental couplings also correlate well with those calculated using extended Hiickel theory to evaluate the contribution of the intervening protein medium.
Two horse heart cyt c variants incorporating the unnatural amino acids (S)-2- amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) and (S)-2-amino-3-(2,2'-bipyrid-4-yl)propanoic acid ( 4Bpa) at position 72 have been prepared using semisynthetic protocols. Negligible perturbation of the protein structure results from this introduction of unnatural amino acids. Redox-active Ru(2,2'-bipyridine)_2^(2+) binds to 4Bpa72 cyt c but not to the 6Bpa protein. Enhanced ET rates were observed in the Ru(bpy)_2^(2+)-modified 4Bpa72 cyt c relative to the analogous His72 derivative. The rapid (< 60 nanosecond) photogeneration of ferrous Ru-modified 4Bpa72 cyt c in the conformationally altered alkaline state demonstrates that laser-induced ET can be employed to study submicrosecond protein-folding events.
Resumo:
As evolution progresses, developmental changes occur. Genes lose and gain molecular partners, regulatory sequences, and new functions. As a consequence, tissues evolve alternative methods to develop similar structures, more or less robust. How this occurs is a major question in biology. One method of addressing this question is by examining the developmental and genetic differences between similar species. Several studies of nematodes Pristionchus pacificus and Oscheius CEW1 have revealed various differences in vulval development from the well-studied C. elegans (e.g. gonad induction, competence group specification, and gene function.)
I approached the question of developmental change in a similar manner by using Caenorhabditis briggsae, a close relative of C. elegans. C. briggsae allows the use of transgenic approaches to determine developmental changes between species. We determined subtle changes in the competence group, in 1° cell specification, and vulval lineage.
We also analyzed the let-60 gene in four nematode species. We found conservation in the codon identity and exon-intron boundaries, but lack of an extended 3' untranslated region in Caenorhabditis briggsae.
Resumo:
Films of Ti-Si-N obtained by reactively sputtering a TiSi_2, a Ti_5Si_3, or a Ti_3Si target are either amorphous or nanocrystalline in structure. The atomic density of some films exceeds 10^23 at./cm^3. The room-temperature resistivity of the films increases with the Si and the N content. A thermal treatment in vacuum at 700 °C for 1 hour decreases the resistivity of the Ti-rich films deposited from the Ti_5Si_3 or the Ti_3Si target, but increases that of the Si-rich films deposited from the TiSi_2 target when the nitrogen content exceeds about 30 at. %.
Ti_(34)Si_(23)N_(43) deposited from the Ti_5Si_3 target is an excellent diffusion barrier between Si and Cu. This film is a mixture of nanocrystalline TiN and amorphous SiN_x. Resistivity measurement from 80 K to 1073 K reveals that this film is electrically semiconductor-like as-deposited, and that it becomes metal-like after an hour annealing at 1000 °C in vacuum. A film of about 100 nm thick, with a resistivity of 660 µΩcm, maintains the stability of Si n+p shallow junction diodes with a 400 nm Cu overlayer up to 850 °C upon 30 min vacuum annealing. When used between Si and Al, the maximum temperature of stability is 550 °C for 30 min. This film can be etched in a CF_4/O_2 plasma.
The amorphous ternary metallic alloy Zr_(60)Al_(15)Ni_(25) was oxidized in dry oxygen in the temperature range 310 °C to 410 °C. Rutherford backscattering and cross-sectional transmission electron microscopy studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel is depleted from the oxide and enriched in the amorphous alloy below the oxide/alloy interface. The oxide layer thickness grows parabolically with the annealing duration, with a transport constant of 2.8x10^(-5) m^2/s x exp(-1.7 eV/kT). The oxidation rate is most likely controlled by the Ni diffusion in the amorphous alloy.
At later stages of the oxidation process, precipitates of nanocrystalline ZrO_2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy.