2 resultados para Bone Tissue engineering

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The forces cells apply to their surroundings control biological processes such as growth, adhesion, development, and migration. In the past 20 years, a number of experimental techniques have been developed to measure such cell tractions. These approaches have primarily measured the tractions applied by cells to synthetic two-dimensional substrates, which do not mimic in vivo conditions for most cell types. Many cell types live in a fibrous three-dimensional (3D) matrix environment. While studying cell behavior in such 3D matrices will provide valuable insights for the mechanobiology and tissue engineering communities, no experimental approaches have yet measured cell tractions in a fibrous 3D matrix.

This thesis describes the development and application of an experimental technique for quantifying cellular forces in a natural 3D matrix. Cells and their surrounding matrix are imaged in three dimensions with high speed confocal microscopy. The cell-induced matrix displacements are computed from the 3D image volumes using digital volume correlation. The strain tensor in the 3D matrix is computed by differentiating the displacements, and the stress tensor is computed by applying a constitutive law. Finally, tractions applied by the cells to the matrix are computed directly from the stress tensor.

The 3D traction measurement approach is used to investigate how cells mechanically interact with the matrix in biologically relevant processes such as division and invasion. During division, a single mother cell undergoes a drastic morphological change to split into two daughter cells. In a 3D matrix, dividing cells apply tensile force to the matrix through thin, persistent extensions that in turn direct the orientation and location of the daughter cells. Cell invasion into a 3D matrix is the first step required for cell migration in three dimensions. During invasion, cells initially apply minimal tractions to the matrix as they extend thin protrusions into the matrix fiber network. The invading cells anchor themselves to the matrix using these protrusions, and subsequently pull on the matrix to propel themselves forward.

Lastly, this thesis describes a constitutive model for the 3D fibrous matrix that uses a finite element (FE) approach. The FE model simulates the fibrous microstructure of the matrix and matches the cell-induced matrix displacements observed experimentally using digital volume correlation. The model is applied to predict how cells mechanically sense one another in a 3D matrix. It is found that cell-induced matrix displacements localize along linear paths. These linear paths propagate over a long range through the fibrous matrix, and provide a mechanism for cell-cell signaling and mechanosensing. The FE model developed here has the potential to reveal the effects of matrix density, inhomogeneity, and anisotropy in signaling cell behavior through mechanotransduction.