10 resultados para Binding affinity constant
em CaltechTHESIS
Resumo:
A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.
In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.
In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.
One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.
The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.
Resumo:
The discovery that the three ring polyamide Im-Py-Py-Dp containing imidazole (Im) and pyrrole (Py) carboxamides binds the DNA sequence 5'-(A,T)G(A,T)C(A,T)-3' as an antiparallel dimer offers a new model for the design of ligands for specific recognition of sequences in the minor groove containing both G,C and A,T base pairs. In Chapter 2, experiments are described in which the sequential addition of five N- methylpyrrolecarboxamides to the imidazole-pyrrole polyamide Im-Py-Py-Dp affords a series of six homologous polyamides, Im-(Py)2-7-Dp, that differ in the size of their binding site, apparent first order binding affinity, and sequence specificity. These results demonstrate that DNA sequences up to nine base pairs in length can be specifically recognized by imidazole-pyrrole polyamides containing three to seven rings by 2:1 polyamide-DNA complex formation in the minor groove. Recognition of a nine base pair site defines the new lower limit of the binding site size that can be recognized by polyamides containing exclusively imidazole and pyrrolecarboxamides. The results of this study should provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity.
In Chapter 3 the design and synthesis of the hairpin polyamide Im-Py-Im-Py-γ-Im- Py-Im-Py-Dp is described. Quantitative DNase I footprint titration experiments reveal that Im-Py-Im-Py-γ-Im-Py-Im-Py-Dp binds six base pair 5'-(A,T)GCGC(A,T)-3' sequences with 30-fold higher affinity than the unlinked polyamide Im-Py-Im-Py-Dp. The hairpin polyamide does not discriminate between A•T and T•A at the first and sixth positions of the binding site as three sites 5'-TGCGCT-3', 5'-TGCGCA-3', and 5 'AGCGCT- 3' are bound with similar affinity. However, Im-Py-Im-Py-γ-Im-Py-Im-PyDp is specific for and discriminates between G•C and C•G base pairs in the 5'-GCGC-3' core as evidenced by lower affinities for the mismatched sites 5'-AACGCA-3', 5'- TGCGTT-3', 5'-TGCGGT-3', and 5'-ACCGCT-3'.
In Chapter 4, experiments are described in which a kinetically stable hexa-aza Schiff base La3+ complex is covalently attached to a Tat(49-72) peptide which has been shown to bind the HIV-1 TAR RNA sequence. Although these metallo-peptides cleave TAR site-specifically in the hexanucleotide loop to afford products consistent with hydrolysis, a series of control experiments suggests that the observed cleavage is not caused by a sequence-specifically bound Tat(49-72)-La(L)3+ peptide.
Resumo:
In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.
Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.
Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.
Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.
Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.
Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.
Chapter Six contains the experimental documentation of the thesis work.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel member of the ATP-binding cassette (ABC) superfamily of membrane proteins. CFTR has two homologous halves, each consisting of six transmembrane spanning domains (TM) followed by a nucleotide binding fold, connected by a regulatory (R) domain. This thesis addresses the question of which domains are responsible for Cl^- selectivity, i.e., which domains line the channel pore.
To address this question, novel blockers of CFTR were characterized. CFTR was heterologously expressed in Xenopus oocytes to study the mechanism of block by two closely related arylaminobenzoates, diphenylamine-2-carboxylic acid (DPC) and flufenamic acid (FFA). Block by both is voltage-dependent, with a binding site ≈ 40% through the electric field of the membrane. DPC and FFA can both reach their binding site from either side of the membrane to produce a flickering block of CFTR single channels. In addition, DPC block is influenced by Cl^- concentration, and DPC blocks with a bimolecular forward binding rate and a unimolecular dissociation rate. Therefore, DPC and FFA are open-channel blockers of CFTR, and a residue of CFTR whose mutation affects their binding must line the pore.
Screening of site-directed mutants for altered DPC binding affinity reveals that TM-6 and TM-12 line the pore. Mutation of residue 5341 in TM-6 abolishes most DPC block, greatly reduces single-channel conductance, and alters the direction of current rectification. Additional residues are found in TM-6 (K335) and TM-12 (T1134) whose mutations weaken or strengthen DPC block; other mutations move the DPC binding site from TM-6 to TM-12. The strengthened block and lower conductance due to mutation T1134F is quantitated at the single-channel level. The geometry of DPC and of the residues mutated suggest α-helical structures for TM-6 and TM-12. Evidence is presented that the effects of the mutations are due to direct side-chain interaction, and not to allosteric effects propagated through the protein. Mutations are also made in TM-11, including mutation S1118F, which gives voltage-dependent current relaxations. The results may guide future studies on permeation through ABC transporters and through other Cl^- channels.
Resumo:
The aromatic core of double helical DNA possesses the unique and remarkable ability to form a conduit for electrons to travel over exceptionally long molecular distances. This core of π-stacked nucleobases creates an efficient pathway for charge transfer to proceed that is exquisitely sensitive to even subtle perturbations. Ground state electrochemistry of DNA-modified electrodes has been one of the major techniques used both to investigate and to harness the property of DNA-mediated charge transfer. DNA-modified electrodes have been an essential tool for both gaining insights into the fundamental properties of DNA and, due to the exquisite specificity of DNA-mediated charge transfer for the integrity of the π-stack, for use in next generation diagnostic sensing. Here, multiplexed DNA-modified electrodes are used to (i) gain new insights on the electrochemical coupling of metalloproteins to the DNA π-stack with relevance to the fundaments of in vivo DNA-mediated charge transfer and (ii) enhance the overall sensitivity of DNA-mediated reduction for use in the detection of low abundance diagnostic targets.
First, Methylene Blue (MB′) was covalently attached to DNA through a flexible C12 alkyl linker to yield a new redox reporter for DNA electrochemistry measurements with enhanced sensitivity. Tethered, intercalated MB′ was reduced through DNA-mediated charge transport. The redox signal intensity for MB′-dT-C12-DNA was found to be at least 3 fold larger than that of previously used Nile Blue (NB)-dT-DNA, which is coupled to the base stack via direct conjugation. The signal attenuation, due to an intervening mismatch, and therefore the degree of DNA-mediated reduction, does, however, depend on the DNA film morphology and the backfilling agent used to passivate the surface. These results highlight two possible mechanisms for the reduction of MB′ on the DNA-modified electrode that are distinguishable by their kinetics: reduction mediated by the DNA base pair stack and direct surface reduction of MB′ at the electrode. The extent of direct reduction at the surface can be minimized by overall DNA assembly conditions.
Next, a series of intercalation-based DNA-mediated electrochemical reporters were developed, using a flexible alkane linkage to validate and explore their DNA-mediated reduction. The general mechanism for the reduction of distally bound redox active species, covalently tethered to DNA through flexible alkyl linkages, was established to be an intraduplex DNA-mediated pathway. MB, NB, and anthraquinone were covalently tethered to DNA with three different covalent linkages. The extent of electronic coupling of the reporter was shown to correlate with the DNA binding affinity of the redox active species, supporting an intercalative mechanism. These electrochemical signals were shown to be exceptionally sensitive to a single intervening π-stack perturbation, an AC mismatch, in a densely packed DNA monolayer, which further supports that the reduction is DNA-mediated. Finally, this DNA-mediated reduction of MB occurs primarily via intra- rather than inter duplex intercalation, as probed through varying the proximity and integrity of the neighboring duplex DNA. Further gains to electrochemical sensitivity of our DNA-modified devices were then achieved through the application of electrocatalytic signal amplification using these solvent accessible intercalative reporters, MB-dT-C8, and hemoglobin as a novel electron sink. Electrocatalysis offers an excellent means of electrochemical signal amplification, yet in DNA based sensors, its application has been limited due to strict assembly conditions. We describe the use of hemoglobin as a robust and effective electron sink for electrocatalysis in DNA sensing on low density DNA films. Protein shielding of the heme redox center minimizes direct reduction at the electrode surface and permits assays on low density DNA films. Electrocatalysis of MB that is covalently tethered to the DNA by a flexible alkyl linkage allows for efficient interactions with both the base stack and hemoglobin. Consistent suppression of the redox signal upon incorporation of single CA mismatch in the DNA oligomer demonstrates that both the unamplified and the electrocatalytically amplified redox signals are generated through DNA-mediated charge transport. Electrocatalysis with hemoglobin is robust: it is stable to pH and temperature variations. The utility and applicability of electrocatalysis with hemoglobin is demonstrated through restriction enzyme detection, and an enhancement in sensitivity permits femtomole DNA sampling.
Finally, we expanded the application of our multiplexed DNA-modified electrodes to the electrochemical characterization of DNA-bound proteins containing [4Fe-4S] clusters. DNA-modified electrodes have become an essential tool for the characterization of the redox chemistry of DNA repair proteins that contain redox cofactors. Multiplexed analysis of EndonucleaseIII (EndoIII), a DNA repair protein containing a [4Fe-4S] cluster known to be accessible via DNA-mediated charge transport, elucidated subtle differences in the electrochemical behavior as a function of DNA morphology. DNA-bound EndoIII is seen to have two different electron transfer pathways for reduction, either through the DNA base stack or through direct surface reduction. Closely packed DNA films, where the protein has limited surface accessibility, produce electrochemical signals reflecting electron transfer that is DNA-mediated. The electrochemical comparison of EndoIII mutants, including a new family of mutations altering the electrostatics surrounding the [4Fe-4S] cluster, was able to be quantitatively performed. While little change in the midpoint potential was found for this family of mutants, significant variations in the efficiency of DNA-mediated electron transfer were apparent. Based on the stability of these proteins, examined by circular dichroism, we propose that the electron transfer pathway can be perturbed not only by the removal of aromatic residues, but also through changes in solvation near the cluster.
Resumo:
Immunoglobulin G (IgG) is central in mediating host defense due to its ability to target and eliminate invading pathogens. The fragment antigen binding (Fab) regions are responsible for antigen recognition; however the effector responses are encoded on the Fc region of IgG. IgG Fc displays considerable glycan heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Intravenous immunoglobulin G (IVIG) is pooled serum IgG from multiple donors and is used to treat individuals with autoimmune and inflammatory disorders such as rheumatoid arthritis and Kawasaki’s disease, respectively. It contains all the subtypes of IgG (IgG1-4) and over 120 glycovariants due to variation of an Asparagine 297-linked glycan on the Fc. The species identified as the activating component of IVIG is sialylated IgG Fc. Comparisons of wild type Fc and sialylated Fc X-ray crystal structures suggests that sialylation causes an increase in conformational flexibility, which may be important for its anti-inflammatory properties.
Although glycan modifications can promote the anti-inflammatory properties of the Fc, there are amino acid substitutions that cause Fcs to initiate an enhanced immune response. Mutations in the Fc can cause up to a 100-fold increase in binding affinity to activating Fc gamma receptors located on immune cells, and have been shown to enhance antibody dependent cell-mediated cytotoxicity. This is important in developing therapeutic antibodies against cancer and infectious diseases. Structural studies of mutant Fcs in complex with activating receptors gave insight into new protein-protein interactions that lead to an enhanced binding affinity.
Together these studies show how dynamic and diverse the Fc region is and how both protein and carbohydrate modifications can alter structure, leading to IgG Fc’s switch from a pro-inflammatory to an anti-inflammatory protein.
Resumo:
This study examines binding of α- and β-D-glucose in their equilibrium mixture to the glucose transporter (GLUT1) in human erythrocyte membrane preparations by an ^1H NMR method, the transferred NOE (TRNOE). This method is shown theoretically and experimentally to be a sensitive probe of weak ligand-macromolecule interactions. The TRNOEs observed are shown to arise solely from glucose binding to GLUT1. Sites at both membrane faces contribute to the TRNOEs. Binding curves obtained are consistent with a homogeneous class of sugar sites, with an apparent KD which varies (from ~30 mM to ~70 mM for both anomers) depending on the membrane preparation examined. Preparations with a higher proportion of the cytoplasmic membrane face exposed to bulk solution yield higher apparent KKDs. The glucose transport inhibitor cytochalasin B essentially eliminates the TRNOE. Nonlinearity was found in the dependence on sugar concentration of the apparent inhibition constant for cytochalasin B reversal of the TRNOE observed in the α anomer (and probably the β anomer); such nonlinearity implies the existence of ternary complexes of sugar, inhibitor and transporter. The inhibition results furthermore imply the presence of a class of relatively high-affinity (KD < 2mM) sugar sites specific for the α anomer which do not contribute to NMR-observable binding. The presence of two classes of sugar-sensitive cytochalasin B sites is also indicated. These results are compared with predictions of the alternating conformer model of glucose transport. Variation of apparent KD in the NMR-observable sites, the formation of ternary complexes and the presence of an anomer-specific site are shown to be inconsistent with this model. An alternate model is developed which reconciles these results with the known transport behavior of GLUT1. In this model, the transporter possesses (at minimum) three classes of sugar sites: (i) transport sites, which are alternately exposed to the cytoplasmic or the extracellular compartment, but never to both simultaneously, (ii) a class of sites (probably relatively low-affinity) which are confined to one compartment, and (iii) the high-affinity α anomer-specific sites, which are confined to the cytoplasmic compartment.
Resumo:
Fucose-α(1-2)-galactose (Fucα(1-2)Gal) carbohydrates have been implicated in cognitive functions. However, the underlying molecular mechanisms that govern these processes are not well understood. While significant progress has been made toward identifying glycoconjugates bearing this carbohydrate epitope, a major challenge remains the discovery of interactions mediated by these sugars. Here, we employ the use of multivalent glycopolymers to enable the proteomic identification of weak affinity, low abundant Fucα(1-2)Gal-binding proteins (i.e. lectins) from the brain. End-biotinylated glycopolymers containing photoactivatable crosslinkers were used to capture and enrich potential Fucα(1-2)Gal-specific lectins from rat brain lysates. Candidate lectins were tested for their ability to bind Fucα(1-2)Gal, and the functional significance of the interaction was investigated for one such candidate, SV2a, using a knock-out mouse system. Our results suggest an important role for this glycan-lectin interaction in facilitating synaptic changes necessary for neuronal communication. This study highlights the use of glycopolymer mimetics to discover novel lectins and identify functional interactions between fucosyl carbohydrates and lectins in the brain.
Resumo:
1. The effect of 2,2’-bis-[α-(trimethylammonium)methyl]azobenzene (2BQ), a photoisomerizable competitive antagonist, was studied at the nicotinic acetycholine receptor of Electrophorus electroplaques using voltage-jump and light-flash techniques.
2. 2BQ, at concentrations below 3 μΜ, reduced the amplitude of voltage-jump relaxations but had little effect on the voltage-jump relaxation time constants under all experimental conditions. At higher concentrations and voltages more negative than -150 mV, 2BQ caused significant open channel blockade.
3. Dose-ratio studies showed that the cis and trans isomers of 2BQ have equilibrium binding constants (K ᵢ) of .33 and 1.0 μΜ, respectively. The binding constants determined for both isomers are independent of temperature, voltage, agonist concentration, and the nature of the agonist.
4. In a solution of predominantly cis-2BQ, visible-light flashes led to a net cis→trans isomerization and caused an increase in the agonist-induced current. This increase had at least two exponential components; the larger amplitude component had the same time constant as a subsequent voltage-jump relaxation; the smaller amplitude component was investigated using ultraviolet light flashes.
5. In a solution of predominantly trans-2BQ, UV-light flashes led to a net trans→cis isomerization and caused a net decrease in the agonist-induced current. This effect had at least two exponential components. The smaller and faster component was an increase in agonist-induced current and had a similar time constant to the voltage-jump relaxation. The larger component was a slow decrease in the agonist-induced current with rate constant approximately an order of magnitude less than that of the voltage-jump relaxation. This slow component provided a measure of the rate constant for dissociation of cis-2BQ (k_ = 60/s at 20°C). Simple modelling of the slope of the dose-rate curves yields an association rate constant of 1.6 x 108/M/s. This agrees with the association rate constant of 1.8 x 108/M/s estimated from the binding constant (Ki). The Q10 of the dissociation rate constant of cis-2BQ was 3.3 between 6° and 20°C. The rate constants for association and dissociation of cis-28Q at receptors are independent of voltage, agonist concentration, and the nature of the agonist.
6. We have measured the molecular rate constants of a competitive antagonist which has roughly the same K ᵢ as d-tubocurarine but interacts more slowly with the receptor. This leads to the conclusion that curare itself has an association rate constant of 4 x 109/M/s or roughly as fast as possible for an encounter-limited reaction.
Resumo:
The binding and catalytic properties of hen's egg white lysozyme have been studied by a variety of techniques. These studies show that the enzyme has three contiguous binding subsites, A, B, and C. The application of nuclear magnetic resonance (NMR) spectroscopy to probe the binding environment of several saccharides to lysozyme has demonstrated that the reducing end sugar rings of chitotriose, chitobiose and the β-form of N-acetylglucosamine all bind in subsite C. The central sugar ring of chitotriose and the sugar ring at the nonreducing end of chitobiose were found to bind in subsite B, while the nonreducing end sugar residue of chitotriose occupied subsite A. The dynamics of the binding process has also been investigated by NMR. The formation rate constant of chitobiose--and chitotriose-enzyme complexes were found to be about 4 X 10-6 M-1 sec-1 with small activation energies.
The stereochemical path of the lysozyme catalyzed hydrolysis of glycosidic bonds has been shown to proceed with at least 99.7% retention of configuration at C-1 of the sugar. The lysozyme catalyzed hydrolysis of glucosidic bonds has been shown to be largely carbonium ion in character by virtue of the α-deuterium kinetic isotope effect (kH/kD = 1.11) observed for the reaction. It is probable that the mechanism of action of the enzyme involves a carbonium ion intermediate which is stereospecifically quenched by solvent. However, acetamido group participation cannot be ruled out for natural substrates.