3 resultados para Binary

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LIGO and Virgo gravitational-wave observatories are complex and extremely sensitive strain detectors that can be used to search for a wide variety of gravitational waves from astrophysical and cosmological sources. In this thesis, I motivate the search for the gravitational wave signals from coalescing black hole binary systems with total mass between 25 and 100 solar masses. The mechanisms for formation of such systems are not well-understood, and we do not have many observational constraints on the parameters that guide the formation scenarios. Detection of gravitational waves from such systems — or, in the absence of detection, the tightening of upper limits on the rate of such coalescences — will provide valuable information that can inform the astrophysics of the formation of these systems. I review the search for these systems and place upper limits on the rate of black hole binary coalescences with total mass between 25 and 100 solar masses. I then show how the sensitivity of this search can be improved by up to 40% by the the application of the multivariate statistical classifier known as a random forest of bagged decision trees to more effectively discriminate between signal and non-Gaussian instrumental noise. I also discuss the use of this classifier in the search for the ringdown signal from the merger of two black holes with total mass between 50 and 450 solar masses and present upper limits. I also apply multivariate statistical classifiers to the problem of quantifying the non-Gaussianity of LIGO data. Despite these improvements, no gravitational-wave signals have been detected in LIGO data so far. However, the use of multivariate statistical classification can significantly improve the sensitivity of the Advanced LIGO detectors to such signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Advanced LIGO and Virgo experiments are poised to detect gravitational waves (GWs) directly for the first time this decade. The ultimate prize will be joint observation of a compact binary merger in both gravitational and electromagnetic channels. However, GW sky locations that are uncertain by hundreds of square degrees will pose a challenge. I describe a real-time detection pipeline and a rapid Bayesian parameter estimation code that will make it possible to search promptly for optical counterparts in Advanced LIGO. Having analyzed a comprehensive population of simulated GW sources, we describe the sky localization accuracy that the GW detector network will achieve as each detector comes online and progresses toward design sensitivity. Next, in preparation for the optical search with the intermediate Palomar Transient Factory (iPTF), we have developed a unique capability to detect optical afterglows of gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM). Its comparable error regions offer a close parallel to the Advanced LIGO problem, but Fermi's unique access to MeV-GeV photons and its near all-sky coverage may allow us to look at optical afterglows in a relatively unexplored part of the GRB parameter space. We present the discovery and broadband follow-up observations (X-ray, UV, optical, millimeter, and radio) of eight GBM-IPTF afterglows. Two of the bursts (GRB 130702A / iPTF13bxl and GRB 140606B / iPTF14bfu) are at low redshift (z=0.145 and z = 0.384, respectively), are sub-luminous with respect to "standard" cosmological bursts, and have spectroscopically confirmed broad-line type Ic supernovae. These two bursts are possibly consistent with mildly relativistic shocks breaking out from the progenitor envelopes rather than the standard mechanism of internal shocks within an ultra-relativistic jet. On a technical level, the GBM--IPTF effort is a prototype for locating and observing optical counterparts of GW events in Advanced LIGO with the Zwicky Transient Facility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.

Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.

Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.