6 resultados para Bicarbonate Retention Factor
em CaltechTHESIS
Resumo:
Vulval differentiation in C. elegans is mediated by an Epidermal growth factor (EGF)- EGF receptor (EGFR) signaling pathway. I have cloned unc-101, a negative regulator of vulval differentiation of the nematode C. elegans. unc-101 encodes a homolog of AP47, the medium chain of the trans-Golgi clathrin-associated protein complex. This identity was confirmed by cloning and comparing sequence of a C. elegans homolog of AP50, the medium chain of the plasma membrane clathrin-associated protein complex. I provided the first genetic evidence that the trans-Golgi clathrin-coated vesicles are involved in regulation of an EGF signaling pathway. Most of the unc-101 alleles are deletions or nonsense mutations, suggesting that these alleles severely reduce the unc-101 activity. A hybrid gene that contains parts of unc-101 and mouse AP4 7 rescued at least two phenotypes of unc-101 mutations, the Unc and the suppression of vulvaless phenotype of let-23(sy1) mutation. Therefore, the functions of AP47 are conserved between nematodes and mammals.
unc-101 mutations can cause a greater than wild-type vulval differentiation in combination with certain mutations in sli-1, another negative regulator of the vulval induction pathway. A mutation in a new gene, rok-1, causes no defect by itself, but causes a greater than wild-type vulval differentiation in the presence of a sli-1 mutation. The unc-101; rok-1; sli-1 triple mutants display a greater extent of vulval differentiation than any double mutant combinations of unc-101, rok-1 and sli-1. Therefore, rok-1 locus defines another negative regulator of the vulval induction pathway.
I analyzed a second gene encoding an AP47 homolog in C. elegans. This gene, CEAP47, encodes a protein 72% identical to both unc-101 and mammalian AP47. A hybrid gene containing parts of unc-101 and CEAP47 sequences can rescue phenotypes of unc-101 mutants, indicating that UNC- 101 and CEAP47 proteins can be redundant if expressed in the same set of cells.
Resumo:
Natural waters may be chemically studied as mixed electrolyte solutions. Some important equilibrium properties of natural waters are intimately related to the activity-concentration ratios (i.e., activity coefficients) of the ions in solution. An Ion Interaction Model, which is based on Pitzer's (1973) thermodynamic model, is proposed in this dissertation. The proposed model is capable of describing the activity coefficient of ions in mixed electrolyte solutions. The effects of temperature on the equilibrium conditions of natural waters and on the activity coefficients of the ions in solution, may be predicted by means of the Ion Interaction Model presented in this work.
The bicarbonate ion, HCO3-, is commonly found in natural waters. This anion plays an important role in the chemical and thermodynamic properties of water bodies. Such properties are usually directly related to the activity coefficient of HCO3- in solution. The Ion Interaction Model, as proposed in this dissertation, is used to describe indirectly measured activity coefficients of HCO3- in mixed electrolyte solutions.
Experimental pH measurements of MCl-MHCO3 and MCl-H2CO3 solutions at 25°C (where M = K+, Na+, NH4+, Ca2+ or Mg2+) are used in this dissertation to evaluate indirectly the MHCO3 virial coefficients. Such coefficients permit the prediction of the activity coefficient of HCO3- in mixed electrolyte solutions. The Ion Interaction Model is found to be an accurate method for predicting the activity coefficient of HCO3- within the experimental ionic strengths (0.2 to 3.0 m). The virial coefficients of KHCO3 and NaHCO3 and their respective temperature variations are obtained from similar experimental measurements at 10° and 40°C. The temperature effects on the NH4HCO3, Ca(HCO3)2, and Mg(HCO3)2 virial coefficients are estimated based on these results and the temperature variations of the virial coefficients of 40 other electrolytes.
Finally, the Ion Interaction Model is utilized to solve various problems of water chemistry where bicarbonate is present in solution.
Resumo:
Alternative scaffolds are non-antibody proteins that can be engineered to bind new targets. They have found useful niches in the therapeutic space due to their smaller size and the ease with which they can be engineered to be bispecific. We sought a new scaffold that could be used for therapeutic ends and chose the C2 discoidin domain of factor VIII, which is well studied and of human origin. Using yeast surface display, we engineered the C2 domain to bind to αvβ3 integrin with a 16 nM affinity while retaining its thermal stability and monomeric nature. We obtained a crystal structure of the engineered domain at 2.1 Å resolution. We have christened this discoidin domain alternative scaffold the “discobody.”
Resumo:
With recent advances in high-throughput sequencing, mapping of genome-wide transcription factor occupancy has become feasible. To advance the understanding of skeletal muscle differentiation specifically and transcriptional regulation in general, I determined the genome-wide occupancy map for myogenin in differentiating C2C12 myocyte cells. I then analyzed the myogenin map for underlying sequence content and the association between occupied elements and expression trajectories of adjacent genes. Having determined that myogenin primarily associates with expressed genes, I performed a similar analysis on occupancy maps of other transcription factors active during skeletal muscle differentiation, including an extensive analysis of co-occupancy. This analysis provided strong motif evidence for protein-protein interactions as the primary driving force in the formation of Myogenin / Mef2 and MyoD / AP-1 complexes at jointly-occupied sites. Finally, factor occupancy analysis was extended to include bHLH transcription factors in tissues other than skeletal muscle. The cross-tissue analysis led to the emergence of a motif structure used by bHLH TFs to encode either tissue-specific or "general" (public) access in a variety of lineages.
Resumo:
Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.
To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.
The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.
Resumo:
Cancer chemotherapy has advanced from highly toxic drugs to more targeted treatments in the last 70 years. Chapter 1 opens with an introduction to targeted therapy for cancer. The benefits of using a nanoparticle to deliver therapeutics are discussed. We move on to siRNA in particular, and why it would be advantageous as a therapy. Specific to siRNA delivery are some challenges, such as nuclease degradation, quick clearance from circulation, needing to enter cells, and getting to the cytosol. We propose the development of a nanoparticle delivery system to tackle these challenges so that siRNA can be effective.
Chapter 2 of this thesis discusses the synthesis and analysis of a cationic mucic acid polymer (cMAP) which condenses siRNA to form a nanoparticle. Various methods to add polyethylene glycol (PEG) for stabilizing the nanoparticle in physiologic solutions, including using a boronic acid binding to diols on mucic acid, forming a copolymer of cMAP with PEG, and creating a triblock with mPEG on both ends of cMAP. The goal of these various pegylation strategies was to increase the circulation time of the siRNA nanoparticle in the bloodstream to allow more of the nanoparticle to reach tumor tissue by the enhanced permeation and retention effect. We found that the triblock mPEG-cMAP-PEGm polymer condensed siRNA to form very stable 30-40 nm particles that circulated for the longest time – almost 10% of the formulation remained in the bloodstream of mice 1 h after intravenous injection.
Chapter 3 explores the use of an antibody as a targeting agent for nanoparticles. Some antibodies of the IgG1 subtype are able to recruit natural killer cells that effect antibody dependent cellular cytotoxicity (ADCC) to kill the targeted cell to which the antibody is bound. There is evidence that the ADCC effect remains in antibody-drug conjugates, so we wanted to know whether the ADCC effect is preserved when the antibody is bound to a nanoparticle, which is a much larger and complex entity. We utilized antibodies against epidermal growth factor receptor with similar binding and pharmacokinetics, cetuximab and panitumumab, which differ in that cetuximab is an IgG1 and panitumumab is an IgG2 (which does not cause ADCC). Although a natural killer cell culture model showed that gold nanoparticles with a full antibody targeting agent can elicit target cell lysis, we found that this effect was not preserved in vivo. Whether this is due to the antibody not being accessible to immune cells or whether the natural killer cells are inactivated in a tumor xenograft remains unknown. It is possible that using a full antibody still has value if there are immune functions which are altered in a complex in vivo environment that are intact in an in vitro system, so the value of using a full antibody as a targeting agent versus using an antibody fragment or a protein such as transferrin is still open to further exploration.
In chapter 4, nanoparticle targeting and endosomal escape are further discussed with respect to the cMAP nanoparticle system. A diboronic acid entity, which gives an order of magnitude greater binding (than boronic acid) to cMAP due to the vicinal diols in mucic acid, was synthesized, attached to 5kD or 10kD PEG, and conjugated to either transferrin or cetuximab. A histidine was incorporated into the triblock polymer between cMAP and the PEG blocks to allow for siRNA endosomal escape. Nanoparticle size remained 30-40 nm with a slightly negative ca. -3 mV zeta potential with the triblock polymer containing histidine and when targeting agents were added. Greater mRNA knockdown was seen with the endosomal escape mechanism than without. The nanoparticle formulations were able to knock down the targeted mRNA in vitro. Mixed effects suggesting function were seen in vivo.
Chapter 5 summarizes the project and provides an outlook on siRNA delivery as well as targeted combination therapies for the future of personalized medicine in cancer treatment.