2 resultados para Belts and belting

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some of the metallogenic provinces of the southwestern United States and northern Mexico are defined by the geographic distribution of trace elements in the primary sulfide minerals chalcopyrite and sphalerite. The elements investigated include antimony, arsenic, bismuth, cadmium, cobalt, gallium, germanium, indium, manganese, molybdenum, nickel, silver, tellurium, thallium, and tin. Of these elements, cobalt, gallium, germanium, indium, nickel, silver, and tin exhibit the best defined geographic distribution.

The data indicate that chalcopyrite is the preferred host for tin and perhaps molybdenum; sphalerite is the preferred host for cadmium, gallium, germanium, indium, and manganese; galena is the preferred host for antimony, bismuth, silver, tellurium, and thallium; and pyrite is the preferred host for cobalt, nickel, and perhaps arsenic. With respect to the two minerals chalcopyrite and sphalerite, antimony, arsenic, molybdenum, nickel, silver, and tin prefer chalcopyrite; and bismuth, cadmium, cobalt, gallium, germanium, indium, manganese, and thallium prefer sphalerite. This distribution probably is the result of the interaction of several factors, among which are these: the various radii of the elements, the association due to chemical similarities of the major and trace elements, and the degree of ionic versus covalent and metallic character of the metal-sulfur bonds in chalcopyrite and sphalerite. The type of deposit, according to a temperature classification, appears to be of minor importance in determining the trace element content of chalcopyrite and sphalerite.

A preliminary investigation of large single crystals of sphalerite and chalcopyrite indicates that the distribution within a single crystal of some elements such as cadmium in sphalerite and indium and silver in chalcopyrite is relatively uniform, whereas the distribution of some other elements such as cobalt and manganese in sphalerite is somewhat less uniform and the distribution of tin in sphalerite is extremely erratic. The variations in trace element content probably are due largely to variations in the composition of the fluids during the growth of the crystals, but the erratic behavior of tin in sphalerite perhaps is related to the presence of numerous cavities and inclusions in the crystal studied.

Maps of the geographic distribution of trace elements in chalcopyrite and sphalerite exhibit three main belts of greater than average trace element content, which are called the Eastern, Central, and Western belts. These belts are consistent in trend and position with a beltlike distribution of copper, gold, lead, zinc, silver, and tungsten deposits and with most of the major tectonic features. However, there appear to be no definite time relationships, for as many as four metallogenic epochs, from Precambrian to late Tertiary, are represented by ore deposits within the Central belt.

The evidence suggests that the beltlike features have a deep seated origin, perhaps in the sub-crust or outer parts of the mantle, and that the deposits within each belt might be genetically related through a beltlike compositional heterogeneity in the source regions of the ores. Hence, the belts are regarded as metallogenic provinces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive Rubidium-Strontium age determinations on both mineral and total rock samples of the crystalline rocks of New Zealand, which almost solely crop out in the South Island, indicate widespread plutonic and metamorphic activity occurred during two periods, one about 100-118 million years ago and the other about 340-370 million years ago. The former results date the Rangitata Orogeny as Cretaceous. They associate extensive plutonic activity with this orogeny which uplifted and metamorphosed the rocks of the New Zealand Geosyncline, although no field association between the metamorphosed geosynclinal rocks and plutonic rocks has been found. The Cretaceous plutonic rocks occur to the west in the Foreland Province in Fiordland, Nelson, and Westland, geographically separated from the Geosynclinal Province. Because of this synchronous timing of plutonic and high pressure metamorphic activity in spatially separated belts, the Rangitata Orogeny in New Zealand is very similar to late Mesozoic orogenic activity in many other areas of the circum-Pacific margin (Miyashiro, 1961).

The 340-370 million year rocks, both plutonic and metamorphic, have been found only in that part of the Foreland Province north of the Alpine Fault. There, they are concentrated along the west coast over a distance of 500 km, and appear scattered inland from the coast. Probably this activity marks the outstanding Phanerozoic stratigraphic gap in New Zealand which occurred after the Lower Devonian.

A few crystalline rocks in the Foreland Province north of the Alpine Fault with measured ages intermediate between 340 and 120 million years have been found. Of these, those with more than one mineral examined give discordant results. All of these rocks are tentatively regarded as 340-370 million year old rocks that have been variously disturbed during the Rangitata Orogeny, 100-120 million years ago.

In addition to these two periods, plutonic activity, dominantly basic and ultrabasic, but including the development of some rocks of intermediate and acidic composition, occurred along the margin of the Geosynclinal Province at its border with the Foreland Province during Permian times about 245 million years ago, and this activity possibly extended into the Mesozoic.

Evidence from rubidium-strontium analyses of minerals and a total rock, and from uranium, thorium, and lead analyses of uniform euhedral zircons from a meta-igneous portion of the Charleston Gneiss, previously mapped as Precambrian, indicate that this rock is a 350-370 million year old plutonic rock metamorphosed 100 million yea rs ago during the Rangitata Orogeny. No crystalline rocks with primary Precambrian ages have been found in New Zealand. However, Pb207/Pb206 ages of 1360 million years and 1370 million years have been determined for rounded detrital zircons separated from each of two hornfels samples of one of New Zealand's olde st sedimentary units, the Greenland Series. These two samples were metamorphosed 345- 370 million years ago. They occur along the west coast, north of the Alpine Fault, at Waitaha River and Moeraki River, separated by 135 km. The Precambrian measured ages are most likely minimum ages for the oldest source area which provided the detrital zircons because the uranium, thorium and lead data are highly discordant. These results are of fundamental importance for the tectonic picture of the Southwest Pacific margin and demonstrate the existence of relatively old continental crust of some lateral extent in the neighborhood of New Zealand.