2 resultados para Bayesian nonparametic
em CaltechTHESIS
Resumo:
A Bayesian probabilistic methodology for on-line structural health monitoring which addresses the issue of parameter uncertainty inherent in problem is presented. The method uses modal parameters for a limited number of modes identified from measurements taken at a restricted number of degrees of freedom of a structure as the measured structural data. The application presented uses a linear structural model whose stiffness matrix is parameterized to develop a class of possible models. Within the Bayesian framework, a joint probability density function (PDF) for the model stiffness parameters given the measured modal data is determined. Using this PDF, the marginal PDF of the stiffness parameter for each substructure given the data can be calculated.
Monitoring the health of a structure using these marginal PDFs involves two steps. First, the marginal PDF for each model parameter given modal data from the undamaged structure is found. The structure is then periodically monitored and updated marginal PDFs are determined. A measure of the difference between the calibrated and current marginal PDFs is used as a means to characterize the health of the structure. A procedure for interpreting the measure for use by an expert system in on-line monitoring is also introduced.
The probabilistic framework is developed in order to address the model parameter uncertainty issue inherent in the health monitoring problem. To illustrate this issue, consider a very simplified deterministic structural health monitoring method. In such an approach, the model parameters which minimize an error measure between the measured and model modal values would be used as the "best" model of the structure. Changes between the model parameters identified using modal data from the undamaged structure and subsequent modal data would be used to find the existence, location and degree of damage. Due to measurement noise, limited modal information, and model error, the "best" model parameters might vary from one modal dataset to the next without any damage present in the structure. Thus, difficulties would arise in separating normal variations in the identified model parameters based on limitations of the identification method and variations due to true change in the structure. The Bayesian framework described in this work provides a means to handle this parametric uncertainty.
The probabilistic health monitoring method is applied to simulated data and laboratory data. The results of these tests are presented.
Resumo:
Current earthquake early warning systems usually make magnitude and location predictions and send out a warning to the users based on those predictions. We describe an algorithm that assesses the validity of the predictions in real-time. Our algorithm monitors the envelopes of horizontal and vertical acceleration, velocity, and displacement. We compare the observed envelopes with the ones predicted by Cua & Heaton's envelope ground motion prediction equations (Cua 2005). We define a "test function" as the logarithm of the ratio between observed and predicted envelopes at every second in real-time. Once the envelopes deviate beyond an acceptable threshold, we declare a misfit. Kurtosis and skewness of a time evolving test function are used to rapidly identify a misfit. Real-time kurtosis and skewness calculations are also inputs to both probabilistic (Logistic Regression and Bayesian Logistic Regression) and nonprobabilistic (Least Squares and Linear Discriminant Analysis) models that ultimately decide if there is an unacceptable level of misfit. This algorithm is designed to work at a wide range of amplitude scales. When tested with synthetic and actual seismic signals from past events, it works for both small and large events.