2 resultados para Basket making.

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans are particularly adept at modifying their behavior in accordance with changing environmental demands. Through various mechanisms of cognitive control, individuals are able to tailor actions to fit complex short- and long-term goals. The research described in this thesis uses functional magnetic resonance imaging to characterize the neural correlates of cognitive control at two levels of complexity: response inhibition and self-control in intertemporal choice. First, we examined changes in neural response associated with increased experience and skill in response inhibition; successful response inhibition was associated with decreased neural response over time in the right ventrolateral prefrontal cortex, a region widely implicated in cognitive control, providing evidence for increased neural efficiency with learned automaticity. We also examined a more abstract form of cognitive control using intertemporal choice. In two experiments, we identified putative neural substrates for individual differences in temporal discounting, or the tendency to prefer immediate to delayed rewards. Using dynamic causal models, we characterized the neural circuit between ventromedial prefrontal cortex, an area involved in valuation, and dorsolateral prefrontal cortex, a region implicated in self-control in intertemporal and dietary choice, and found that connectivity from dorsolateral prefrontal cortex to ventromedial prefrontal cortex increases at the time of choice, particularly when delayed rewards are chosen. Moreover, estimates of the strength of connectivity predicted out-of-sample individual rates of temporal discounting, suggesting a neurocomputational mechanism for variation in the ability to delay gratification. Next, we interrogated the hypothesis that individual differences in temporal discounting are in part explained by the ability to imagine future reward outcomes. Using a novel paradigm, we imaged neural response during the imagining of primary rewards, and identified negative correlations between activity in regions associated the processing of both real and imagined rewards (lateral orbitofrontal cortex and ventromedial prefrontal cortex, respectively) and the individual temporal discounting parameters estimated in the previous experiment. These data suggest that individuals who are better able to represent reward outcomes neurally are less susceptible to temporal discounting. Together, these findings provide further insight into role of the prefrontal cortex in implementing cognitive control, and propose neurobiological substrates for individual variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications.

Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake.

To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that can capture the uncertainties in EEW information and the decision process is used. This approach is called the Performance-Based Earthquake Early Warning, which is based on the PEER Performance-Based Earthquake Engineering method. Use of surrogate models is suggested to improve computational efficiency. Also, new models are proposed to add the influence of lead time into the cost-benefit analysis. For example, a value of information model is used to quantify the potential value of delaying the activation of a mitigation action for a possible reduction of the uncertainty of EEW information in the next update. Two practical examples, evacuation alert and elevator control, are studied to illustrate the ePAD framework. Potential advanced EEW applications, such as the case of multiple-action decisions and the synergy of EEW and structural health monitoring systems, are also discussed.