3 resultados para Basin Scale Analysis, Synthesis and Integration (European Commission Grant Agreement 264 933)

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design, synthesis, and characterization of two novel metalloprotein motifs is presented. The first project involved the design and construction of a protein motif which was programmed to form a tetradentate metal complex upon the addition of metal cations. The overall structure of the motif was based on a ββ super-secondary structure consisting of a flexible peptide sequence flanked by metal binding regions located at the carboxy and amino termini. The metal binding region near the amino terminus was constructed from a reverse turn motif with two metal ligating residues, (2R, 3R)-β-methyl-cysteine and histidine. Selection of the peptide sequence for this region was based on the conformational analysis of a series of tetrapeptides designed to form reverse turns in solution.

The stereospecific syntheses of a series of novel bipyridyl- and phenanthrolylsubstituted amino acids was carried out to provide ligands for the carboxy terminus metal binding region. These residues were incorporated into peptide sequences using solid phase peptide synthesis protocols, and metal binding studies indicated that the metal binding properties of these ligands was dictated by the specific regioisomer of the heteroaromatic ring and the peptide primary sequence.

Finally, a peptide containing optimized components for the metal binding regions was prepared to test the ability of the compound to form the desired intramolecular peptide:metal cation complexes. Metal binding studies demonstrated that the peptide formed monomeric complexes with very high metal cation binding affinities and that the two metal binding regions act cooperatively in the metal binding process. The use of these systems in the design of proteins capable of regulating naturally occurring proteins is discussed.

The second project involved the semisynthesis of two horse heart cytochrome c mutants incorporating the bipyridyl-amino acids at position 72 of the protein sequence. Structural studies on the proteins indicated that the bipyridyl amino acids had a neglible effect on the protein structure. One of the mutants was modified with Ru(bpy)_2^(+2) to form a redox-active protein, and the modified protein was found to have enhanced electron transfer properties between the heme and the introduced metal site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes research pursued in two areas, both involving the design and synthesis of sequence specific DNA-cleaving proteins. The first involves the use of sequence-specific DNA-cleaving metalloproteins to probe the structure of a protein-DNA complex, and the second seeks to develop cleaving moieties capable of DNA cleavage through the generation of a non-diffusible oxidant under physiological conditions.

Chapter One provides a brief review of the literature concerning sequence-specific DNA-binding proteins. Chapter Two summarizes the results of affinity cleaving experiments using leucine zipper-basic region (bZip) DNA-binding proteins. Specifically, the NH_2-terminal locations of a dimer containing the DNA binding domain of the yeast transcriptional activator GCN4 were mapped on the binding sites 5'-CTGACTAAT-3' and 5'ATGACTCTT- 3' using affinity cleaving. Analysis of the DNA cleavage patterns from Fe•EDTA-GCN4(222-281) and (226-281) dimers reveals that the NH_2-termini are in the major groove nine to ten base pairs apart and symmetrically displaced four to five base pairs from the central C of the recognition site. These data are consistent with structural models put forward for this class of DNA binding proteins. The results of these experiments are evaluated in light of the recently published crystal structure for the GCN4-DNA complex. Preliminary investigations of affinity cleaving proteins based on the DNA-binding domains of the bZip proteins Jun and Fos are also described.

Chapter Three describes experiments demonstrating the simultaneous binding of GCN4(226-281) and 1-Methylimidazole-2-carboxamide-netropsin (2-ImN), a designed synthetic peptide which binds in the minor groove of DNA at 5'-TGACT-3' sites as an antiparallel, side-by-side dimer. Through the use of Fe•EDTA-GCN4(226-281) as a sequence-specific footprinting agent, it is shown that the dimeric protein GCN4(226-281) and the dimeric peptide 2- ImN can simultaneously occupy their common binding site in the major and minor grooves of DNA, respectively. The association constants for 2-ImN in the presence and in the absence of Fe•EDTA-GCN4(226-281) are found to be similar, suggesting that the binding of the two dimers is not cooperative.

Chapter Four describes the synthesis and characterization of PBA-β-OH-His- Hin(139-190), a hybrid protein containing the DNA-binding domain of Hin recombinase and the putative iron-binding and oxygen-activating domain of the antitumor antibiotic bleomycin. This 54-residue protein, comprising residues 139-190 of Hin recombinase with the dipeptide pyrimidoblamic acid-β-hydroxy-L-histidine (PBA-β-OH-His) at the NH2 terminus, was synthesized by solid phase methods. PBA-β-OH-His-Hin(139- 190) binds specifically to DNA at four distinct Hin binding sites with affinities comparable to those of the unmodified Hin(139-190). In the presence of dithiothreitol (DTT), Fe•PB-β-OH-His-Hin(139-190) cleaves DNA with specificity remarkably similar to that of Fe•EDTA-Hin(139-190), although with lower efficiency. Analysis of the cleavage pattern suggests that DNA cleavage is mediated through a diffusible species, in contrast with cleavage by bleomycin, which occurs through a non-diffusible oxidant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of the first member of a new class of Dewar benzenes has been achieved. The synthesis of 2,3- dimethylbicyclo[2.2.0]hexa-2,5-diene-1, 4-dicarboxylic acid and its anhydride are described. Dibromomaleic anhydride and dichloroethylene were found to add efficiently in a photochemical [2+2] cycloaddition to produce 1,2-dibromo- 3,4-dichlorocyclobutane-1,2-dicarboxylic acid. Removal of the bromines with tin/copper couple yielded dichloro- cyclobutenes which added to 2-butyne under photochemical conditions to yield 5,6-dichloro-2,3-dimethylbicyclo [2.2.0] hex-2-ene dicarboxylic acids. One of the three possible isomers yielded a stable anhydride which could be dechlorinated using triphenyltin radicals generated by the photolysis of hexaphenylditin.

Photolysis of argon matrix isolated 2,3-dimethylbicyclo [2.2.0]hexa-2, 5-diene-1,4-dicarboxylic acid anhydride produced traces whose strongest bands in the infrared were at 3350 and 600 cm^(-1). This suggested the formation of terminal acetylenes. The spectra of argon matrix isolated E- and Z- 3,4-dimethylhexa-1,5-diyne-3-ene and cis-and trans-octa- 2,6-diyne-4-ene were compared with the spectrum of the photolysis products. Possibly all four diethynylethylenes were present in the anhydride photolysis products. Gas chromatograph-mass spectral analysis of the volatiles from the anhydride photolysis again suggested, but did not confirm, the presence of the diethynylethylenes.