2 resultados para Banks and banking, Central
em CaltechTHESIS
Resumo:
The material presented in this thesis concerns the growth and characterization of III-V semiconductor heterostructures. Studies of the interactions between bound states in coupled quantum wells and between well and barrier bound states in AlAs/GaAs heterostructures are presented. We also demonstrate the broad array of novel tunnel structures realizable in the InAs/GaSb/AlSb material system. Because of the unique broken-gap band alignment of InAs/GaSb these structures involve transport between the conduction- and valence-bands of adjacent layers. These devices possess a wide range of electrical properties and are fundamentally different from conventional AlAs/GaAs tunnel devices. We report on the fabrication of a novel tunnel transistor with the largest reported room temperature current gains. We also present time-resolved studies of the growth fronts of InAs/GainSb strained layer superlattices and investigations of surface anion exchange reactions.
Chapter 2 covers tunneling studies of conventional AlAs/GaAs RTD's. The results of two studies are presented: (i) A test of coherent vs. sequential tunneling in triple barrier heterostructures, (ii) An optical measurement of the effect of barrier X-point states on Γ-point well states. In the first it was found if two quantum wells are separated by a sufficiently thin barrier, then the eigenstates of the system extend coherently across both wells and the central barriers. For thicker barriers between the wells, the electrons become localized in the individual wells and transport is best described by the electrons hopping between the wells. In the second, it was found that Γ-point well states and X-point barrier states interact strongly. The barrier X-point states modify the energies of the well states and increase the escape rate for carriers in the quantum well.
The results of several experimental studies of a novel class of tunnel devices realized in the InAs/GaSb/AlSb material system are presented in Chapter 3. These interband tunnel structures involve transport between conduction- and valence-band states in adjacent material layers. These devices are compared and contrasted with the conventional AlAs/GaAs structures discussed in Chapter 2 and experimental results are presented for both resonant and nonresonant devices. These results are compared with theoretical simulations and necessary extensions to the theoretical models are discussed.
In chapter 4 experimental results from a novel tunnel transistor are reported. The measured current gains in this transistor exceed 100 at room temperature. This is the highest reported gain at room temperature for any tunnel transistor. The device is analyzed and the current conduction and gain mechanisms are discussed.
Chapters 5 and 6 are studies of the growth of structures involving layers with different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for far infrared detectors and time resolved, in-situ studies of their growth fronts. It was found that the bandgap of superlattices with identical layer thicknesses and compositions varied by as much as 40 meV depending on how their internal interfaces are formed. The absorption lengths in superlattices with identical bandgaps but whose interfaces were formed in different ways varied by as much as a factor of two. First the superlattice is discussed including an explanation of the device and the complications involved in its growth. The experimental technique of reflection high energy electron diffraction (RHEED) is reviewed, and the results of RHEED studies of the growth of these complicated structures are presented. The development of a time resolved, in-situ characterization of the internal interfaces of these superlattices is described. Chapter 6 describes the result of a detailed study of some of the phenomena described in chapter 5. X-ray photoelectron spectroscopy (XPS) studies of anion exchange reactions on the growth fronts of these superlattices are reported. Concurrent RHEED studies of the same physical systems studied with XPS are presented. Using the RHEED and XPS results, a real-time, indirect measurement of surface exchange reactions was developed.
Resumo:
From studies of protoplanetary disks to extrasolar planets and planetary debris, we aim to understand the full evolution of a planetary system. Observational constraints from ground- and space-based instrumentation allows us to measure the properties of objects near and far and are central to developing this understanding. We present here three observational campaigns that, when combined with theoretical models, reveal characteristics of different stages and remnants of planet formation. The Kuiper Belt provides evidence of chemical and dynamical activity that reveals clues to its primordial environment and subsequent evolution. Large samples of this population can only be assembled at optical wavelengths, with thermal measurements at infrared and sub-mm wavelengths currently available for only the largest and closest bodies. We measure the size and shape of one particular object precisely here, in hopes of better understanding its unique dynamical history and layered composition.
Molecular organic chemistry is one of the most fundamental and widespread facets of the universe, and plays a key role in planet formation. A host of carbon-containing molecules vibrationally emit in the near-infrared when excited by warm gas, T~1000 K. The NIRSPEC instrument at the W.M. Keck Observatory is uniquely configured to study large ranges of this wavelength region at high spectral resolution. Using this facility we present studies of warm CO gas in protoplanetary disks, with a new code for precise excitation modeling. A parameterized suite of models demonstrates the abilities of the code and matches observational constraints such as line strength and shape. We use the models to probe various disk parameters as well, which are easily extensible to others with known disk emission spectra such as water, carbon dioxide, acetylene, and hydrogen cyanide.
Lastly, the existence of molecules in extrasolar planets can also be studied with NIRSPEC and reveals a great deal about the evolution of the protoplanetary gas. The species we observe in protoplanetary disks are also often present in exoplanet atmospheres, and are abundant in Earth's atmosphere as well. Thus, a sophisticated telluric removal code is necessary to analyze these high dynamic range, high-resolution spectra. We present observations of a hot Jupiter, revealing water in its atmosphere and demonstrating a new technique for exoplanet mass determination and atmospheric characterization. We will also be applying this atmospheric removal code to the aforementioned disk observations, to improve our data analysis and probe less abundant species. Guiding models using observations is the only way to develop an accurate understanding of the timescales and processes involved. The futures of the modeling and of the observations are bright, and the end goal of realizing a unified model of planet formation will require both theory and data, from a diverse collection of sources.