5 resultados para BRANCH-POINTS
em CaltechTHESIS
Resumo:
Distinct structures delineating the introns of Simian Virus 40 T-antigen and Adenovirus 2 E1A genes have been discovered. The structures, which are centered around the branch points of the genes inserted in supercoiled double-stranded plasmids, are specifically targeted through photoactivated strand cleavage by the metal complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). The DNA sites that are recognized lack sequence homology but are similar in demarcating functionally important sites on the RNA level. The single-stranded DNA fragments corresponding to the coding strands of the genes were also found to fold into a structure apparently identical to that in the supercoiled genes based on the recognition by the metal complex. Further investigation of different single-stranded DNA fragments with other structural probes, such as another metal complex bis(1,10-phenanthroline)(phenanthrenequinone diimine)rhodium(III), AMT (4'aminomethyl-4,5',8 trimethylpsoralen), restriction enzyme Mse I, and mung bean nuclease, showed that the structures require the sequ ences at both ends of the intron plus the flanking sequences but not the middle of the intron. The two ends form independent helices which interact with each other to form the global tertiary structures. Both of the intron structures share similarities to the structure of the Holliday junction, which is also known to be specifically targeted by the former metal complex. These structures may have arisen from early RNA intron structures and may have been used to facilitate the evolution of genes through exon shuffling by acting as target sites for recombinase enzymes.
Resumo:
In Part I a class of linear boundary value problems is considered which is a simple model of boundary layer theory. The effect of zeros and singularities of the coefficients of the equations at the point where the boundary layer occurs is considered. The usual boundary layer techniques are still applicable in some cases and are used to derive uniform asymptotic expansions. In other cases it is shown that the inner and outer expansions do not overlap due to the presence of a turning point outside the boundary layer. The region near the turning point is described by a two-variable expansion. In these cases a related initial value problem is solved and then used to show formally that for the boundary value problem either a solution exists, except for a discrete set of eigenvalues, whose asymptotic behaviour is found, or the solution is non-unique. A proof is given of the validity of the two-variable expansion; in a special case this proof also demonstrates the validity of the inner and outer expansions.
Nonlinear dispersive wave equations which are governed by variational principles are considered in Part II. It is shown that the averaged Lagrangian variational principle is in fact exact. This result is used to construct perturbation schemes to enable higher order terms in the equations for the slowly varying quantities to be calculated. A simple scheme applicable to linear or near-linear equations is first derived. The specific form of the first order correction terms is derived for several examples. The stability of constant solutions to these equations is considered and it is shown that the correction terms lead to the instability cut-off found by Benjamin. A general stability criterion is given which explicitly demonstrates the conditions under which this cut-off occurs. The corrected set of equations are nonlinear dispersive equations and their stationary solutions are investigated. A more sophisticated scheme is developed for fully nonlinear equations by using an extension of the Hamiltonian formalism recently introduced by Whitham. Finally the averaged Lagrangian technique is extended to treat slowly varying multiply-periodic solutions. The adiabatic invariants for a separable mechanical system are derived by this method.
Resumo:
Since the discovery of D-branes as non-perturbative, dynamic objects in string theory, various configurations of branes in type IIA/B string theory and M-theory have been considered to study their low-energy dynamics described by supersymmetric quantum field theories.
One example of such a construction is based on the description of Seiberg-Witten curves of four-dimensional N = 2 supersymmetric gauge theories as branes in type IIA string theory and M-theory. This enables us to study the gauge theories in strongly-coupled regimes. Spectral networks are another tool for utilizing branes to study non-perturbative regimes of two- and four-dimensional supersymmetric theories. Using spectral networks of a Seiberg-Witten theory we can find its BPS spectrum, which is protected from quantum corrections by supersymmetry, and also the BPS spectrum of a related two-dimensional N = (2,2) theory whose (twisted) superpotential is determined by the Seiberg-Witten curve. When we don’t know the perturbative description of such a theory, its spectrum obtained via spectral networks is a useful piece of information. In this thesis we illustrate these ideas with examples of the use of Seiberg-Witten curves and spectral networks to understand various two- and four-dimensional supersymmetric theories.
First, we examine how the geometry of a Seiberg-Witten curve serves as a useful tool for identifying various limits of the parameters of the Seiberg-Witten theory, including Argyres-Seiberg duality and Argyres-Douglas fixed points. Next, we consider the low-energy limit of a two-dimensional N = (2, 2) supersymmetric theory from an M-theory brane configuration whose (twisted) superpotential is determined by the geometry of the branes. We show that, when the two-dimensional theory flows to its infra-red fixed point, particular cases realize Kazama-Suzuki coset models. We also study the BPS spectrum of an Argyres-Douglas type superconformal field theory on the Coulomb branch by using its spectral networks. We provide strong evidence of the equivalence of superconformal field theories from different string-theoretic constructions by comparing their BPS spectra.
Resumo:
The Los Angeles Harbor at San Pedro with its natural advantages, and the big development of these now underway, will very soon be the key to the traffic routes of Southern California. The Atchison, Topeka, and Santa Fe railway company realizing this and, not wishing to be caught asleep, has planned to build a line from El Segundo to the harbor. The developments of the harbor are not the only developments taking place in these localities and the proposed new line is intended to include these also.
Resumo:
Part I
Chapter 1.....A physicochemical study of the DNA molecules from the three bacteriophages, N1, N5, and N6, which infect the bacterium, M. lysodeikticus, has been made. The molecular weights, as measured by both electron microscopy and sedimentation velocity, are 23 x 106 for N5 DNA and 31 x 106 for N1 and N6 DNA's. All three DNA's are capable of thermally reversible cyclization. N1 and N6 DNA's have identical or very similar base sequences as judged by membrane filter hybridization and by electron microscope heteroduplex studies. They have identical or similar cohesive ends. These results are in accord with the close biological relation between N1 and N6 phages. N5 DNA is not closely related to N1 or N6 DNA. The denaturation Tm of all three DNA's is the same and corresponds to a (GC) content of 70%. However, the buoyant densities in CsCl of Nl and N6 DNA's are lower than expected, corresponding to predicted GC contents of 64 and 67%. The buoyant densities in Cs2SO4 are also somewhat anomalous. The buoyant density anomalies are probably due to the presence of odd bases. However, direct base composition analysis of N1 DNA by anion exchange chromatography confirms a GC content of 70%, and, in the elution system used, no peaks due to odd bases are present.
Chapter 2.....A covalently closed circular DNA form has been observed as an intracellular form during both productive and abortive infection processes in M. lysodeikticus. This species has been isolated by the method of CsC1-ethidium bromide centrifugation and examined with an electron microscope.
Chapter 3.....A minute circular DNA has been discovered as a homogeneous population in M. lysodeikticus. Its length and molecular weight as determined by electron microscopy are 0.445 μ and 0.88 x 106 daltons respectively. There is about one minicircle per bacterium.
Chapter 4.....Several strains of E. coli 15 harbor a prophage. Viral growth can be induced by exposing the host to mitomycin C or to uv irradiation. The coliphage 15 particles from E. coli 15 and E, coli 15 T- appear as normal phage with head and tail structure; the particles from E. coli 15 TAU are tailless. The complete particles exert a colicinogenic activity on E.coli 15 and 15 T-, the tailless particles do not. No host for a productive viral infection has been found and the phage may be defective. The properties of the DNA of the virus have been studied, mainly by electron microscopy. After induction but before lysis, a closed circular DNA with a contour length of about 11.9 μ is found in the bacterium; the mature phage DNA is a linear duplex and 7.5% longer than the intracellular circular form. This suggests the hypothesis that the mature phage DNA is terminally repetitious and circularly permuted. The hypothesis was confirmed by observing that denaturation and renaturation of the mature phage DNA produce circular duplexes with two single-stranded branches corresponding to the terminal repetition. The contour length of the mature phage DNA was measured relative to φX RFII DNA and λ DNA; the calculated molecular weight is 27 x 106. The length of the single-stranded terminal repetition was compared to the length of φX 174 DNA under conditions where single-stranded DNA is seen in an extended form in electron micrographs. The length of the terminal repetition is found to be 7.4% of the length of the nonrepetitious part of the coliphage 15 DNA. The number of base pairs in the terminal repetition is variable in different molecules, with a fractional standard deviation of 0.18 of the average number in the terminal repetition. A new phenomenon termed "branch migration" has been discovered in renatured circular molecules; it results in forked branches, with two emerging single strands, at the position of the terminal repetition. The distribution of branch separations between the two terminal repetitions in the population of renatured circular molecules was studied. The observed distribution suggests that there is an excluded volume effect in the renaturation of a population of circularly permuted molecules such that strands with close beginning points preferentially renature with each other. This selective renaturation and the phenomenon of branch migration both affect the distribution of branch separations; the observed distribution does not contradict the hypothesis of a random distribution of beginning points around the chromosome.
Chapter 5....Some physicochemical studies on the minicircular DNA species in E. coli 15 (0.670 μ, 1.47 x 106 daltons) have been made. Electron microscopic observations showed multimeric forms of the minicircle which amount to 5% of total DNA species and also showed presumably replicating forms of the minicircle. A renaturation kinetic study showed that the minicircle is a unique DNA species in its size and base sequence. A study on the minicircle replication has been made under condition in which host DNA synthesis is synchronized. Despite experimental uncertainties involved, it seems that the minicircle replication is random and the number of the minicircles increases continuously throughout a generation of the host, regardless of host DNA synchronization.
Part II
The flow dichroism of dilute DNA solutions (A260≈0.1) has been studied in a Couette-type apparatus with the outer cylinder rotating and with the light path parallel to the cylinder axis. Shear gradients in the range of 5-160 sec.-1 were studied. The DNA samples were whole, "half," and "quarter" molecules of T4 bacteriophage DNA, and linear and circular λb2b5c DNA. For the linear molecules, the fractional flow dichroism is a linear function of molecular weight. The dichroism for linear A DNA is about 1.8 that of the circular molecule. For a given DNA, the dichroism is an approximately linear function of shear gradient, but with a slight upward curvature at low values of G, and some trend toward saturation at larger values of G. The fractional dichroism increases as the supporting electrolyte concentration decreases.