4 resultados para Atomic Force Microscopy

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to magnetic resonance was introduced in 1992 based upon detection of spin-induced forces by J. Sidles [1]. This technique, now called magnetic resonance force microscopy (MRFM), was first demonstrated that same year via electron paramagnetic resonance (EPR) by D. Rugar et al. [2]. This new method combines principles of magnetic resonance with those of scanned probe technology to detect spin resonance through mechanical, rather than inductive, means. In this thesis the development and use of ferromagnetic resonance force microscopy (FMRFM) is described. This variant of MRFM, which allows investigation of ferromagnetic samples, was first demonstrated in 1996 by Z. Zhang et al. [3]. FMRFM enables characterization of (a) the dynamic magnetic properties of microscale magnetic devices, and (b) the spatial dependence of ferromagnetic resonance within a sample. Both are impossible with conventional ferromagnetic resonance techniques.

Ferromagnetically coupled systems, however, pose unique challenges for force detection. In this thesis the attainable spatial resolution - and the underlying physical mechanisms that determine it - are established. We analyze the dependence of the magnetostatic modes upon sample dimensions using a series of microscale yttrium iron garnet (YIG) samples. Mapping of mode amplitudes within these sample is attained with an unprecedented spatial resolution of 15μm. The modes, never before analyzed on this scale, fit simple models developed in this thesis for samples of micron dimensions. The application of stronger gradient fields induces localized perturbation of the ferromagnetic resonance modes. The first demonstrations of this effect are presented in this study, and a simple theoretical model is developed to explain our observations. The results indicate that the characteristics of the locally-detected ferromagnetic modes are still largely determined by the external fields and dimensions of the entire sample, rather than by the localized interaction volume (i.e., the locale most strongly affected by the local gradient field). Establishing this is a crucial first step toward understanding FMRFM in the high gradient field limit where the dispersion relations become locally determined. In this high gradient field regime, FMRFM imaging becomes analogous with that of EPR MRFM.

FMRFM has also been employed to characterize magnetic multilayers, similar to those utilized in giant magnetoresistance (GMR) devices, on a lateral scale 40 x 40μm. This is orders of magnitude smaller than possible via conventional methods. Anisotropy energies, thickness, and interface qualities of individual layers have been resolved.

This initial work clearly demonstrates the immense and unique potential that FMRFM offers for characterizing advanced magnetic nanostructures and magnetic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational protein design (CPD) is a burgeoning field that uses a physical-chemical or knowledge-based scoring function to create protein variants with new or improved properties. This exciting approach has recently been used to generate proteins with entirely new functions, ones that are not observed in naturally occurring proteins. For example, several enzymes were designed to catalyze reactions that are not in the repertoire of any known natural enzyme. In these designs, novel catalytic activity was built de novo (from scratch) into a previously inert protein scaffold. In addition to de novo enzyme design, the computational design of protein-protein interactions can also be used to create novel functionality, such as neutralization of influenza. Our goal here was to design a protein that can self-assemble with DNA into nanowires. We used computational tools to homodimerize a transcription factor that binds a specific sequence of double-stranded DNA. We arranged the protein-protein and protein-DNA binding sites so that the self-assembly could occur in a linear fashion to generate nanowires. Upon mixing our designed protein homodimer with the double-stranded DNA, the molecules immediately self-assembled into nanowires. This nanowire topology was confirmed using atomic force microscopy. Co-crystal structure showed that the nanowire is assembled via the desired interactions. To the best of our knowledge, this is the first example of a protein-DNA self-assembly that does not rely on covalent interactions. We anticipate that this new material will stimulate further interest in the development of advanced biomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA possesses the curious ability to conduct charge longitudinally through the π-stacked base pairs that reside within the interior of the double helix. The rate of charge transport (CT) through DNA has a shallow distance dependence. DNA CT can occur over at least 34 nm, a very long molecular distance. Lastly, DNA CT is exquisitely sensitive to disruptions, such as DNA damage, that affect the dynamics of base-pair stacking. Many DNA repair and DNA-processing enzymes are being found to contain 4Fe-4S clusters. These co-factors have been found in glycosylases, helicases, helicase-nucleases, and even enzymes such as DNA polymerase, RNA polymerase, and primase across the phylogeny. The role of these clusters in these enzymes has remained elusive. Generally, iron-sulfur clusters serve redox roles in nature since, formally, the cluster can exist in multiple oxidation states that can be accessed within a biological context. Taken together, these facts were used as a foundation for the hypothesis that DNA-binding proteins with 4Fe-4S clusters utilize DNA-mediated CT as a means to signal one another to scan the genome as a first step in locating the subtle damage that occurs within a sea of undamaged bases within cells.

Herein we describe a role for 4Fe-4S clusters in DNA-mediated charge transport signaling among EndoIII, MutY, and DinG, which are from distinct repair pathways in E. coli. The DinG helicase is an ATP-dependent helicase that contains a 4Fe-4S cluster. To study the DNA-bound redox properties of DinG, DNA-modified electrochemistry was used to show that the 4Fe-4S cluster of DNA-bound DinG is redox-active at cellular potentials, and shares the 80 mV vs. NHE redox potential of EndoIII and MutY. ATP hydrolysis by DinG increases the DNA-mediated redox signal observed electrochemically, likely reflecting better coupling of the 4Fe-4S cluster to DNA while DinG unwinds DNA, which could have interesting biological implications. Atomic force microscopy experiments demonstrate that DinG and EndoIII cooperate at long range using DNA charge transport to redistribute to regions of DNA damage. Genetics experiments, moreover, reveal that this DNA-mediated signaling among proteins also occurs within the cell and, remarkably, is required for cellular viability under conditions of stress. Knocking out DinG in CC104 cells leads to a decrease in MutY activity that is rescued by EndoIII D138A, but not EndoIII Y82A. DinG, thus, appears to help MutY find its substrate using DNA-mediated CT, but do MutY or EndoIII aid DinG in a similar way? The InvA strain of bacteria was used to observe DinG activity, since DinG activity is required within InvA to maintain normal growth. Silencing the gene encoding EndoIII in InvA results in a significant growth defect that is rescued by the overexpression of RNAseH, a protein that dismantles the substrate of DinG, R-loops. This establishes signaling between DinG and EndoIII. Furthermore, rescue of this growth defect by the expression of EndoIII D138A, the catalytically inactive but CT-proficient mutant of EndoIII, is also observed, but expression of EndoIII Y82A, which is CT-deficient but enzymatically active, does not rescue growth. These results provide strong evidence that DinG and EndoIII utilize DNA-mediated signaling to process DNA damage. This work thus expands the scope of DNA-mediated signaling within the cell, as it indicates that DNA-mediated signaling facilitates the activities of DNA repair enzymes across the genome, even for proteins from distinct repair pathways.

In separate work presented here, it is shown that the UvrC protein from E. coli contains a hitherto undiscovered 4Fe-4S cluster. A broad shoulder at 410 nm, characteristic of 4Fe-4S clusters, is observed in the UV-visible absorbance spectrum of UvrC. Electron paramagnetic resonance spectroscopy of UvrC incubated with sodium dithionite, reveals a spectrum with the signature features of a reduced, [4Fe-4S]+1, cluster. DNA-modified electrodes were used to show that UvrC has the same DNA-bound redox potential, of ~80 mV vs. NHE, as EndoIII, DinG, and MutY. Again, this means that these proteins are capable of performing inter-protein electron transfer reactions. Does UvrC use DNA-mediated signaling to facilitate the repair of its substrates?

UvrC is part of the nucleotide excision repair (NER) pathway in E. coli and is the protein within the pathway that performs the chemistry required to repair bulky DNA lesions, such as cyclopyrimidine dimers, that form as a product of UV irradiation. We tested if UvrC utilizes DNA-mediated signaling to facilitate the efficient repair of UV-induced DNA damage products by helping UvrC locate DNA damage. The UV sensitivity of E. coli cells lacking DinG, a putative signaling partner of UvrC, was examined. Knocking out DinG in E. coli leads to a sensitivity of the cells to UV irradiation. A 5-10 fold reduction in the amount of cells that survive after irradiation with 90 J/m2 of UV light is observed. This is consistent with the hypothesis that UvrC and DinG are signaling partners, but is this signaling due to DNA-mediated CT? Complementing the knockout cells with EndoIII D138A, which can also serve as a DNA CT signaling partner, rescues cells lacking DinG from UV irradiation, while complementing the cells with EndoIII Y82A shows no rescue of viability. These results indicate that there is cross-talk between the NER pathway and DinG via DNA-mediated signaling. Perhaps more importantly, this work also establishes that DinG, EndoIII, MutY, and UvrC comprise a signaling network that seems to be unified by the ability of these proteins to perform long range DNA-mediated CT signaling via their 4Fe-4S clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.

Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.

Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.

Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.

Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.