2 resultados para Asymétrie et prime de risque

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coarsening kinetics of Ni3 Si(γ') precipitate in a binary Ni-Si alloy containing 6.5 wt. % silicon was studied by magnetic techniques and transmission electronmicroscopy. A calibration curve was established to determine the concentration of silicon in the matrix. The variation of the Si content of the Ni-rich matrix as a function of time follows Lifshitz and Wagner theory for diffusion controlled coarsening phenomena. The estimated values of equilibrium solubility of silicon in the matrix represent the true coherent equilibrium solubilities.

The experimental particle-size distributions and average particle size were determined from dark field electron micrographs. The average particle size varies linearly with t-1/3 as suggested by Lifshitz and Wagner. The experimental distributions of particle sizes differ slightly from the theoretical curve at the early stages of aging, but the agreement is satisfactory at the later stages. The values of diffusion coefficient of silicon, interfacial free energy and activation energy were calculated from the results of coarsening kinetics. The experimental value of effective diffusion coefficient is in satisfactory agreement with the value predicted by the application of irreversible the rmodynamics to the process of volume constrained growth of coherent precipitate during coarsening. The coherent γ' particles in Ni-Sialloy unlike those in Ni-Al and Ni-Ti seem to lose coherency at high temperature. A mechanism for the formation of semi-coherent precipitate is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let F = Ǫ(ζ + ζ –1) be the maximal real subfield of the cyclotomic field Ǫ(ζ) where ζ is a primitive qth root of unity and q is an odd rational prime. The numbers u1=-1, uk=(ζk-k)/(ζ-ζ-1), k=2,…,p, p=(q-1)/2, are units in F and are called the cyclotomic units. In this thesis the sign distribution of the conjugates in F of the cyclotomic units is studied.

Let G(F/Ǫ) denote the Galoi's group of F over Ǫ, and let V denote the units in F. For each σϵ G(F/Ǫ) and μϵV define a mapping sgnσ: V→GF(2) by sgnσ(μ) = 1 iff σ(μ) ˂ 0 and sgnσ(μ) = 0 iff σ(μ) ˃ 0. Let1, ... , σp} be a fixed ordering of G(F/Ǫ). The matrix Mq=(sgnσj(vi) ) , i, j = 1, ... , p is called the matrix of cyclotomic signatures. The rank of this matrix determines the sign distribution of the conjugates of the cyclotomic units. The matrix of cyclotomic signatures is associated with an ideal in the ring GF(2) [x] / (xp+ 1) in such a way that the rank of the matrix equals the GF(2)-dimension of the ideal. It is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root mod p, then Mq is non-singular. Also let p be arbitrary, let ℓ be a primitive root mod q and let L = {i | 0 ≤ i ≤ p-1, the least positive residue of defined by ℓi mod q is greater than p}. Let Hq(x) ϵ GF(2)[x] be defined by Hq(x) = g. c. d. ((Σ xi/I ϵ L) (x+1) + 1, xp + 1). It is shown that the rank of Mq equals the difference p - degree Hq(x).

Further results are obtained by using the reciprocity theorem of class field theory. The reciprocity maps for a certain abelian extension of F and for the infinite primes in F are associated with the signs of conjugates. The product formula for the reciprocity maps is used to associate the signs of conjugates with the reciprocity maps at the primes which lie above (2). The case when (2) is a prime in F is studied in detail. Let T denote the group of totally positive units in F. Let U be the group generated by the cyclotomic units. Assume that (2) is a prime in F and that p is odd. Let F(2) denote the completion of F at (2) and let V(2) denote the units in F(2). The following statements are shown to be equivalent. 1) The matrix of cyclotomic signatures is non-singular. 2) U∩T = U2. 3) U∩F2(2) = U2. 4) V(2)/ V(2)2 = ˂v1 V(2)2˃ ʘ…ʘ˂vp V(2)2˃ ʘ ˂3V(2)2˃.

The rank of Mq was computed for 5≤q≤929 and the results appear in tables. On the basis of these results and additional calculations the following conjecture is made: If q and p = (q -1)/ 2 are both primes, then Mq is non-singular.