3 resultados para Assignment of credit

em CaltechTHESIS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methodology for the preparation of allenes from propargylic hydrazine precursors under mild conditions is described. Oxidation of the propargylic hydrazines, which can be readily prepared from propargylic alcohols, with either of two azo oxidants, diethyl azodicarboxylate (DEAD) or 4-methyl 1,2-triazoline-3,5-dione (MTAD), effects conversion to the allenes, presumably via sigmatropic rearrangement of a monoalkyl diazene intermediate. This rearrangement is demonstrated to proceed with essentially complete stereospecificity. The application of this methodology to the preparation of other allenes, including two that are notable for their reactivity and thermal instability, is also described.

The structural and mechanistic study of a monoalkyl diazene intermediate in the oxidative transformation of propargylic hydrazines to allenes is described. The use of long-range heteronuclear NMR coupling constants for assigning monoalkyl diazene stereochemistry (E vs Z) is also discussed. Evidence is presented that all known monoalkyl diazenes are the E isomers, and the erroneous assignment of stereochemistry in the previous report of the preparation of (Z)-phenyldiazene is discussed.

The synthesis, characterization, and reactivity of 1,6-didehydro[10]annulene are described. This molecule has been recognized as an interesting synthetic target for over 40 years and represents the intersection of two sets of extensively studied molecules: nonbenzenoid aromatic compounds and molecules containing sterically compressed π-systems.The formation of 1,5-dehydronaphthalene from 1 ,6-didehydro[10]annulene is believed to be the prototype for cycloaromatizations that produce 1,4-dehydroaromatic species with the radical centers disposed anti about the newly formed single bond. The aromaticity of this annulene and the facility of its cycloaromatization are also analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Threefold symmetric Fe phosphine complexes have been used to model the structural and functional aspects of biological N2 fixation by nitrogenases. Low-valent bridging Fe-S-Fe complexes in the formal oxidation states Fe(II)Fe(II), Fe(II)/Fe(I), and Fe(I)/Fe(I) have been synthesized which display rich spectroscopic and magnetic behavior. A series of cationic tris-phosphine borane (TPB) ligated Fe complexes have been synthesized and been shown to bind a variety of nitrogenous ligands including N2H4, NH3, and NH2-. These complexes are all high spin S = 3/2 and display EPR and magnetic characteristics typical of this spin state. Furthermore, a sequential protonation and reduction sequence of a terminal amide results in loss of NH3 and uptake of N2. These stoichiometric transformations represent the final steps in potential N2 fixation schemes.

Treatment of an anionic FeN2 complex with excess acid also results in the formation of some NH3, suggesting the possibility of a catalytic cycle for the conversion of N2 to NH3 mediated by Fe. Indeed, use of excess acid and reductant results in the formation of seven equivalents of NH3 per Fe center, demonstrating Fe mediated catalytic N2 fixation with acids and protons for the first time. Numerous control experiments indicate that this catalysis is likely being mediated by a molecular species.

A number of other phosphine ligated Fe complexes have also been tested for catalysis and suggest that a hemi-labile Fe-B interaction may be critical for catalysis. Additionally, various conditions for the catalysis have been investigated. These studies further support the assignment of a molecular species and delineate some of the conditions required for catalysis.

Finally, combined spectroscopic studies have been performed on a putative intermediate for catalysis. These studies converge on an assignment of this new species as a hydrazido(2-) complex. Such species have been known on group 6 metals for some time, but this represents the first characterization of this ligand on Fe. Further spectroscopic studies suggest that this species is present in catalytic mixtures, which suggests that the first steps of a distal mechanism for N2 fixation are feasible in this system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

I.

Various studies designed to elucidate the electronic structure of the arsenic donor ligand, o-phenylenebisdimethylarsine (diarsine), have been carried out. The electronic spectrum of diarsine has been measured at 300 and 77˚K. Electronic spectra of the molecular complexes of various substituted organoarsines and phosphines with tetracyanoethylene have been measured and used to estimate the relative ionization potentials of these molecules.

Uv photolysis of arsines in frozen solution (96˚K) has yielded thermally labile, paramagnetic products. These include the molecular cations of the photolyzed compounds. The species (diars)+ exhibits hyper-fine splitting due to two equivalent 75As(I=3/2) nuclei. Resonances due to secondary products are reported and assignments discussed.

Evidence is presented for the involvement of d-orbitals in the bonding of arsines. In (diars)+ there is mixing of arsenic “lone-pair” orbitals with benzene ring π-orbitals.

II.

Detailed electronic spectral measurements at 300 and 77˚K have been carried out on five-coordinate complexes of low-spin nickel(II), including complexes of both trigonal bipyramidal (TBP) and square pyramidal (SPY) geometry. TBP complexes are of the form NiLX+ (X=halide or cyanide,

L = Qƭ(CH2)3As(CH3)2]3 or

P [hexagon - Q'CH3] , Q = P, As,

Q’=S, Se).

The electronic spectra of these compounds exhibit a novel feature at low temperature. The first ligand field band, which is asymmetric in the room temperature solution spectrum, is considerably more symmetrical at 77˚K. This effect is interpreted in terms of changes in the structure of the complex.

The SPY complexes are of the form Ni(diars)2Xz (X=CL, Br, CNS, CN, thiourea, NO2, As). On the basis of the spectral results, the d-level ordering is concluded to be xy ˂ xz, yz ˂ z2 ˂˂ x2 - y2. Central to this interpretation is identification of the symmetry-allowed 1A11E (xz, yz → x2 - y2) transition. This assignment was facilitated by the low temperature measurements.

An assignment of the charge-transfer spectra of the five-coordinate complexes is reported, and electronic spectral criteria for distinguishing the two limiting geometries are discussed.