2 resultados para Armed Forces Hospital - Campus Lisbon
em CaltechTHESIS
Resumo:
A general description of the need for hospital flow meters is given along with an analysis of some common flow measurement methods.
The design criteria, establishment of the basic configuration of the instrument, and the evolution of the final design are presented in detail. The ability of the magnetic crossover mechanism to extract the square root of an input is explained, and design curves are presented. The action of the flow totalizer is described in relation to the rest of the instrument. A complete set of manufacturing drawings for the instrument and its tooling is included in the thesis.
In conclusion, an evaluation of the completed instrument is made, and improvements and modifications are indicated. Mention is made of the adaptability of the magnetic crossover mechanism to other instrumentation.
Resumo:
The investigations described herein are both experimental and theoretical. An experimental technique is described by which the models tested could be oscillated sinusoidally in heave. The apparatus used to gather the unsteady lift, drag and pitching moment data is also described.
The models tested were two flat delta wings with apex angles of 15° and 30° and they had sharp leading edges to insure flow separation. The models were fabricated from 0.25 inch aluminum plate and were approximately one foot in length.
Three distinct types of flow were investigated: 1) fully wetted, 2) ventilated and 3) planing. The experimental data are compared with existing theories for steady motions in the case of fully wetted delta wings. Ventilation measurements, made only for the 30° model at 20° angle of attack, of lift and drag are presented.
A correction of the theory proposed by M.P. Tulin for high speed planing of slender bodies is presented and it is extended to unsteady motions. This is compared to the experimental measurements made at 6° and 12° angle of attack for the two models previously described.
This is the first extensive measurement of unsteady drag for any shape wing, the first measurement of unsteady planing forces, the first quantitative documentation of unstable oscillations near a free surface, and the first measurements of the unsteady forces on ventilated delta wings. The results of these investigations, both theoretical and experimental, are discussed and further investigations suggested.