1 resultado para Annotations sémantiques
em CaltechTHESIS
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Boston University Digital Common (5)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (10)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (31)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Cornell: DigitalCommons@ILR (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (23)
- Harvard University (90)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (8)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (4)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (15)
- Queensland University of Technology - ePrints Archive (35)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (15)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (5)
- South Carolina State Documents Depository (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (23)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal (6)
- Université de Montréal, Canada (43)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (166)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- USA Library of Congress (6)
- WestminsterResearch - UK (2)
Resumo:
In this thesis we describe a system that tracks fruit flies in video and automatically detects and classifies their actions. We introduce Caltech Fly-vs-Fly Interactions, a new dataset that contains hours of video showing pairs of fruit flies engaging in social interactions, and is published with complete expert annotations and articulated pose trajectory features. We compare experimentally the value of a frame-level feature representation with the more elaborate notion of bout features that capture the structure within actions. Similarly, we compare a simple sliding window classifier architecture with a more sophisticated structured output architecture, and find that window based detectors outperform the much slower structured counterparts, and approach human performance. In addition we test the top performing detector on the CRIM13 mouse dataset, finding that it matches the performance of the best published method.