6 resultados para Al-Alaoui Transform
em CaltechTHESIS
Resumo:
To explain the ^(26)Mg isotopic anomaly seen in meteorites (^(26)Al daughter) as well as the observation of 1809-keV γ rays in the interstellar medium (live decay of 26Al) one must know, among other things, the destruction rate of ^(26)Al. Properties of states in ^(27)Si just above the ^(26)Al + p mass were investigated to determine the destruction rate of ^(26)Al via the ^(26)Al(p,γ)^(27)Si reaction at astrophysical temperatures.
Twenty micrograms of ^(26)Al were used to produce two types of Al_2O_3 targets by evaporation of the oxide. One was onto a thick platinum backing suitable for (p,γ) work, and the other onto a thin carbon foil for the (^3He,d) reaction.
The ^(26)Al(p,γ)^(27)Si excitation function, obtained using a germanium detector and voltage-ramped target, confirmed known resonances and revealed new ones at 770, 847, 876, 917, and 928 keV. Possible resonances below the lowest observed one at E_p = 286 keV were investigated using the ^(26)Al(^3He,d)^(27)Si proton-transfer reaction. States in 27Si corresponding to 196- and 286-keV proton resonances were observed. A possible resonance at 130 keV (postulated in prior work) was shown to have a strength of wγ less than 0.02 µeV.
By arranging four large Nal detector as a 47π calorimeter, the 196-keV proton resonance, and one at 247 keV, were observed directly, having wγ = 55± 9 and 10 ± 5 µeV, respectively.
Large uncertainties in the reaction rate have been reduced. At novae temperatures, the rate is about 100 times faster than that used in recent model calculations, casting some doubt on novae production of galactic ^(26)Al.
Resumo:
Chapter I
Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.
Chapter II
A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.
EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.
EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.
Chapter III
A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.
Resumo:
Part I.
In recent years, backscattering spectrometry has become an important tool for the analysis of thin films. An inherent limitation, though, is the loss of depth resolution due to energy straggling of the beam. To investigate this, energy straggling of 4He has been measured in thin films of Ni, Al, Au and Pt. Straggling is roughly proportional to square root of thickness, appears to have a slight energy dependence and generally decreases with decreasing atomic number of the adsorber. The results are compared with predictions of theory and with previous measurements. While Ni measurements are in fair agreement with Bohr's theory, Al measurements are 30% above and Au measurements are 40% below predicted values. The Au and Pt measurements give straggling values which are close to one another.
Part II.
MeV backscattering spectrometry and X-ray diffraction are used to investigate the behavior of sputter-deposited Ti-W mixed films on Si substrates. During vacuum anneals at temperatures near 700°C for several hours, the metallization layer reacts with the substrate. Backscattering analysis shows that the resulting compound layer is uniform in composition and contains Ti, Wand Si. The Ti:W ratio in the compound corresponds to that of the deposited metal film. X-ray analyses with Reed and Guinier cameras reveal the presence of the ternary TixW(1-x)Si2 compound. Its composition is unaffected by oxygen contamination during annealing, but the reaction rate is affected. The rate measured on samples with about 15% oxygen contamination after annealing is linear, of the order of 0.5 Å per second at 725°C, and depends on the crystallographic orientation of the substrate and the dc bias during sputter-deposition of the Ti-W film.
Au layers of about 1000 Å thickness were deposited onto unreacted Ti-W films on Si. When annealed at 400°C these samples underwent a color change,and SEM micrographs of the samples showed that an intricate pattern of fissures which were typically 3µm wide had evolved. Analysis by electron microprobe revealed that Au had segregated preferentially into the fissures. This result suggests that Ti-W is not a barrier to Au-Si intermixing at 400°C.
Resumo:
This thesis describes the development of low-noise heterodyne receivers at THz frequencies for submillimeter astronomy using Nb-based superconductor-insulator-superconductor (SIS) tunneling junctions. The mixers utilize a quasi-optical configuration which consists of a planar twin-slot antenna and antisymmetrically-fed two-junctions on an antireflection-coated silicon hyperhemispherical lens. On-chip integrated tuning circuits, in the form of microstrip lines, are used to obtain maximum coupling efficiency in the designed frequency band. To reduce the rf losses in the integrated tuning circuits above the superconducting Nb gap frequency (~ 700 GHz), normal-metal Al is used to replace Nb as the tuning circuits.
To account the rf losses in the micros trip lines, we calculated the surface impedance of the AI films using the nonlocal anomalous skin effect for finite thickness films. Nb films were calculated using the Mattis-Bardeen theory in the extreme anomalous limit. Our calculations show that the losses of the Al and Nb microstrip lines are about equal at 830 GHz. For Al-wiring and Nb-wiring mixers both optimized at 1050 GHz, the RF coupling efficiency of Al-wiring mixer is higher than that of Nb-wiring one by almost 50%. We have designed both Nb-wiring and Al-wiring mixers below and above the gap frequency.
A Fourier transform spectrometer (FTS) has been constructed especially for the study of the frequency response of SIS receivers. This FTS features large aperture size (10 inch) and high frequency resolution (114 MHz). The FTS spectra, obtained using the SIS receivers as direct detectors on the FTS, agree quite well with our theoretical simulations. We have also, for the first time, measured the FTS heterodyne response of an SIS mixer at sufficiently high resolution to resolve the LO and the sidebands. Heterodyne measurements of our SIS receivers with Nb-wiring or Al-wiring have yielded results which arc among the best reported to date for broadband heterodyne receivers. The Nb-wiring mixers, covering 400 - 850 GHz band with four separate fixed-tuned mixers, have uncorrected DSB receiver noise temperature around 5hv/kb to 700 GHz, and better than 540 K at 808 GHz. An Al-wiring mixer designed for 1050 GHz band has an uncorrected DSB receiver noise temperature 840 K at 1042 GHz and 2.5 K bath temperature. Mixer performance analysis shows that Nb junctions can work well up to twice the gap frequency and the major cause of loss above the gap frequency is the rf losses in the microstrip tuning structures. Further advances in THz SIS mixers may be possible using circuits fabricated with higher-gap superconductors such as NbN. However, this will require high-quality films with low RF surface resistance at THz frequencies.
Resumo:
The lowest T = 2 states have been identified and studied in the nuclei 12C, 12B, 20F and and 28Al. The first two of these were produced in the reactions 14C(p,t)12C and 14C (p,3He)12B, at 50.5 and 63.4 MeV incident proton energy respectively, at the Oak Ridge National Laboratory. The T = 2 states in 20F and 28Al were observed in (3He,p) reactions at 12-MeV incident energy, with the Caltech Tandem accelerator.
The results for the four nuclei studied are summarized below:
(1) 12C: the lowest T = 2 state was located at an excitation energy of 27595 ± 20 keV, and has a width less than 35 keV.
(2) 12B: the lowest T = 2 state was found at an excitation energy of 12710 ± 20 keV. The width was determined to be less than 54 keV and the spin and parity were confirmed to be 0+. A second 12B state (or doublet) was observed at an excitation energy of 14860 ± 30 keV with a width (if the group corresponds to a single state) of 226 ± 30 keV.
(3) 20F: the lowest T = 2 state was observed at an excitation of 6513 ± 5 keV; the spin and parity were confirmed to be 0+. A second state, tentatively identified as T = 2 from the level spacing, was located at 8210 ± 6 keV.
(4) 28Al: the lowest T = 2 state was identified at an excitation of 5997 ± 6 keV; the spin and parity were confirmed to be 0+. A second state at an excitation energy of 7491 ± 11 keV is tentatively identified as T = 2, with a corresponding (tentative) spin and parity assignment Jπ = 2+.
The results of the present work and the other known masses of T = 2 states and nuclei for 8 ≤ A ≤ 28 are summarized, and massequation coefficients have been extracted for these multiplets. These coefficients were compared with those from T = 1 multiplets, and then used to predict the mass and stability of each of the unobserved members of the T = 2 multiplets.
Resumo:
I report the solubility and diffusivity of water in lunar basalt and an iron-free basaltic analogue at 1 atm and 1350 °C. Such parameters are critical for understanding the degassing histories of lunar pyroclastic glasses. Solubility experiments have been conducted over a range of fO2 conditions from three log units below to five log units above the iron-wüstite buffer (IW) and over a range of pH2/pH2O from 0.03 to 24. Quenched experimental glasses were analyzed by Fourier transform infrared spectroscopy (FTIR) and secondary ionization mass spectrometry (SIMS) and were found to contain up to ~420 ppm water. Results demonstrate that, under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is <3 ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 24; and (5) SIMS analyses of water in iron-rich glasses equilibrated under variable fO2 conditions can be strongly influenced by matrix effects, even when the concentrations of water in the glasses are low. Our results can be used to constrain the entrapment pressure of the lunar melt inclusions of Hauri et al. (2011).
Diffusion experiments were conducted over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to ~10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to ~430 ppm. Water concentration gradients are well described by models in which the diffusivity of water (D*water) is assumed to be constant. The relationship between D*water and water concentration is well described by a modified speciation model (Ni et al. 2012) in which both molecular water and hydroxyl are allowed to diffuse. The success of this modified speciation model for describing our results suggests that we have resolved the diffusivity of hydroxyl in basaltic melt for the first time. Best-fit values of D*water for our experiments on lunar basalt vary within a factor of ~2 over a range of pH2/pH2O from 0.007 to 9.7, a range of fO2 from IW-2.2 to IW+4.9, and a water concentration range from ~80 ppm to ~280 ppm. The relative insensitivity of our best-fit values of D*water to variations in pH2 suggests that H2 diffusion was not significant during degassing of the lunar glasses of Saal et al. (2008). D*water during dehydration and hydration in H2/CO2 gas mixtures are approximately the same, which supports an equilibrium boundary condition for these experiments. However, dehydration experiments into CO2 and CO/CO2 gas mixtures leave some scope for the importance of kinetics during dehydration into H-free environments. The value of D*water chosen by Saal et al. (2008) for modeling the diffusive degassing of the lunar volcanic glasses is within a factor of three of our measured value in our lunar basaltic melt at 1350 °C.
In Chapter 4 of this thesis, I document significant zonation in major, minor, trace, and volatile elements in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions concurrent with diffusive propagation of the boundary layer toward the inclusion center.
Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease towards the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects.
A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C hr-1 from the liquidus down to ~1000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1000 °C is 40 s to just over one hour.
Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization.
All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.