3 resultados para Al 2O 3

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.

Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.

A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anisotropy of 1.3 - 2.3 MeV protons in interplanetary space has been measured using the Caltech Electron/Isotope Spectrometer aboard IMP-7 for 317 6-hour periods from 72/273 to 74/2. Periods dominated by prompt solar particle events are not included. The convective and diffusive anisotropies are determined from the observed anisotropy using concurrent solar wind speed measurements and observed energy spectra. The diffusive flow of particles is found to be typically toward the sun, indicating a positive radial gradient in the particle density. This anisotropy is inconsistent with previously proposed sources of low-energy proton increases seen at 1 AU which involve continual solar acceleration.

The typical properties of this new component of low-energy cosmic rays have been determine d for this period which is near solar minimum. The particles have a median intensity of 0.06 protons/ cm^(2)-sec-sr-MeV and a mean spectral index of -3.15.The amplitude of the diffusive anisotropy is approximately proportional to the solar wind speed. The rate at which particles are diffusing toward the sun is larger than the rate at which the solar wind is convecting the particles away from the sun. The 20 to 1 proton to alpha ratio typical of this new component has been reported by Mewaldt, et al. (1975b).

A propagation model with κ_(rr) assumed independent of radius and energy is used to show that the anisotropy could be due to increases similar to those found by McDonald, et al. (1975) at ~3 AU. The interplanetary Fermi-acceleration model proposed by Fisk (1976) to explain the increases seen near 3 AU is not consistent with the ~12 per cent diffusive anisotropy found.

The dependence of the diffusive anisotropy on various parameters is shown. A strong dependence of the direction of the diffusive anisotropy on the concurrently measured magnetic field direction is found, indicating a κ_⊥ less than κ_∥ to be typical for this large data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lowest T = 2 states have been identified and studied in the nuclei 12C, 12B, 20F and and 28Al. The first two of these were produced in the reactions 14C(p,t)12C and 14C (p,3He)12B, at 50.5 and 63.4 MeV incident proton energy respectively, at the Oak Ridge National Laboratory. The T = 2 states in 20F and 28Al were observed in (3He,p) reactions at 12-MeV incident energy, with the Caltech Tandem accelerator.

The results for the four nuclei studied are summarized below:

(1) 12C: the lowest T = 2 state was located at an excitation energy of 27595 ± 20 keV, and has a width less than 35 keV.

(2) 12B: the lowest T = 2 state was found at an excitation energy of 12710 ± 20 keV. The width was determined to be less than 54 keV and the spin and parity were confirmed to be 0+. A second 12B state (or doublet) was observed at an excitation energy of 14860 ± 30 keV with a width (if the group corresponds to a single state) of 226 ± 30 keV.

(3) 20F: the lowest T = 2 state was observed at an excitation of 6513 ± 5 keV; the spin and parity were confirmed to be 0+. A second state, tentatively identified as T = 2 from the level spacing, was located at 8210 ± 6 keV.

(4) 28Al: the lowest T = 2 state was identified at an excitation of 5997 ± 6 keV; the spin and parity were confirmed to be 0+. A second state at an excitation energy of 7491 ± 11 keV is tentatively identified as T = 2, with a corresponding (tentative) spin and parity assignment Jπ = 2+.

The results of the present work and the other known masses of T = 2 states and nuclei for 8 ≤ A ≤ 28 are summarized, and massequation coefficients have been extracted for these multiplets. These coefficients were compared with those from T = 1 multiplets, and then used to predict the mass and stability of each of the unobserved members of the T = 2 multiplets.