3 resultados para After-images.
em CaltechTHESIS
Resumo:
This thesis presents two different forms of the Born approximations for acoustic and elastic wavefields and discusses their application to the inversion of seismic data. The Born approximation is valid for small amplitude heterogeneities superimposed over a slowly varying background. The first method is related to frequency-wavenumber migration methods. It is shown to properly recover two independent acoustic parameters within the bandpass of the source time function of the experiment for contrasts of about 5 percent from data generated using an exact theory for flat interfaces. The independent determination of two parameters is shown to depend on the angle coverage of the medium. For surface data, the impedance profile is well recovered.
The second method explored is mathematically similar to iterative tomographic methods recently introduced in the geophysical literature. Its basis is an integral relation between the scattered wavefield and the medium parameters obtained after applying a far-field approximation to the first-order Born approximation. The Davidon-Fletcher-Powell algorithm is used since it converges faster than the steepest descent method. It consists essentially of successive backprojections of the recorded wavefield, with angular and propagation weighing coefficients for density and bulk modulus. After each backprojection, the forward problem is computed and the residual evaluated. Each backprojection is similar to a before-stack Kirchhoff migration and is therefore readily applicable to seismic data. Several examples of reconstruction for simple point scatterer models are performed. Recovery of the amplitudes of the anomalies are improved with successive iterations. Iterations also improve the sharpness of the images.
The elastic Born approximation, with the addition of a far-field approximation is shown to correspond physically to a sum of WKBJ-asymptotic scattered rays. Four types of scattered rays enter in the sum, corresponding to P-P, P-S, S-P and S-S pairs of incident-scattered rays. Incident rays propagate in the background medium, interacting only once with the scatterers. Scattered rays propagate as if in the background medium, with no interaction with the scatterers. An example of P-wave impedance inversion is performed on a VSP data set consisting of three offsets recorded in two wells.
Resumo:
A common explanation for African current underdevelopment is the extractive character of institutions established during the colonial period. Yet, since colonial extraction is hard to quantify and its exact mechanisms are not well understood, we still do not know precisely how colonial institutions affect economic growth today. In this project, I study this issue by focusing on the peculiar structure of trade and labor policies employed by the French colonizers.
First, I analyze how trade monopsonies and coercive labor institutions reduced African gains from trade during the colonial period. By using new data on prices to agricultural producers and labor institutions in French Africa, I show that (1) the monopsonistic character of colonial trade implied a reduction in prices to producers far below world market prices; (2) coercive labor institutions allowed the colonizers to reduce prices even further; (3) as a consequence, colonial extraction cut African gains from trade by over 60%.
Given the importance of labor institutions, I then focus on their origin by analyzing the colonial governments' incentives to choose between coerced and free labor. I argue that the choice of institutions was affected more by the properties of exported commodities, such as prices and economies of scale, than by the characteristics of colonies, such indigenous population density and ease of settlement for the colonizers.
Finally, I study the long-term effects of colonial trade monopsonies and coercive labor institutions. By combining archival data on prices in the French colonies with maps of crop suitability, I show that the extent to which prices to agricultural producers were reduced with respect to world market prices is strongly negatively correlated with current regional development, as proxied by luminosity data from satellite images. The evidence suggests that colonial extraction affected subsequent growth by reducing development in rural areas in favor of a urban elite. The differential impact in rural and urban areas can be the reason why trade monopsonies and extractive institutions persisted long after independence.
Resumo:
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.
Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.
The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.