5 resultados para Adsorption capacity
em CaltechTHESIS
Resumo:
Adsorption of aqueous Pb(II) and Cu(II) on α-quartz was studied as a function of time, system surface area, and chemical speciation. Experimental systems contained sodium as a major cation, hydroxide, carbonate, and chloride as major anions, and covered the pH range 4 to 8. In some cases citrate and EDTA were added as representative organic complexing agents. The adsorption equilibria were reached quickly, regardless of the system surface area. The positions of the adsorption equilibria were found to be strongly dependent on pH, ionic strength and concentration of citrate and EDTA. The addition of these non-adsorbing ligands resulted in a competition between chelation and adsorption. The experimental work also included the examination of the adsorption behavior of the doubly charged major cations Ca(II) and Mg(II) as a function of pH.
The theoretical description of the experimental systems was obtained by means of chemical equilibrium-plus-adsorption computations using two adsorption models: one mainly electrostatic (the James-Healy Model), and the other mainly chemical (the Ion Exchange-Surface Complex Formation Model). Comparisons were made between these two models.
The main difficulty in the theoretical predictions of the adsorption behavior of Cu(II) was the lack of the reliable data for the second hydrolysis constant(*β_2) The choice of the constant was made on the basis of potentiometric titratlons of Cu^(2+)
The experimental data obtained and the resulting theoretical observations were applied in models of the chemical behavior of trace metals in fresh oxic waters, with emphasis on Pb(II) and Cu(II).
Resumo:
This thesis brings together four papers on optimal resource allocation under uncertainty with capacity constraints. The first is an extension of the Arrow-Debreu contingent claim model to a good subject to supply uncertainty for which delivery capacity has to be chosen before the uncertainty is resolved. The second compares an ex-ante contingent claims market to a dynamic market in which capacity is chosen ex-ante and output and consumption decisions are made ex-post. The third extends the analysis to a storable good subject to random supply. Finally, the fourth examines optimal allocation of water under an appropriative rights system.
Resumo:
We present the first experimental evidence that the heat capacity of superfluid 4He, at temperatures very close to the lambda transition temperature, Tλ,is enhanced by a constant heat flux, Q. The heat capacity at constant Q, CQ,is predicted to diverge at a temperature Tc(Q) < Tλ at which superflow becomes unstable. In agreement with previous measurements, we find that dissipation enters our cell at a temperature, TDAS(Q),below the theoretical value, Tc(Q). Our measurements of CQ were taken using the discrete pulse method at fourteen different heat flux values in the range 1µW/cm2 ≤ Q≤ 4µW /cm2. The excess heat capacity ∆CQ we measure has the predicted scaling behavior as a function of T and Q:∆CQ • tα ∝ (Q/Qc)2, where QcT) ~ t2ν is the critical heat current that results from the inversion of the equation for Tc(Q). We find that if the theoretical value of Tc( Q) is correct, then ∆CQ is considerably larger than anticipated. On the other hand,if Tc(Q)≈ TDAS(Q),then ∆CQ is the same magnitude as the theoretically predicted enhancement.
Resumo:
Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences.
Resumo:
A study was conducted on the adsorption of Escherichia coli bacteriophage T4 to activated carbon. Preliminary adsorption experiments were also made with poliovirus Type III. The effectiveness of such adsorbents as diatomaceous earth, Ottawa sand, and coconut charcoal was also tested for virus adsorption.
The kinetics of adsorption were studied in an agitated solution containing virus and carbon. The mechanism of attachment and site characteristics were investigated by varying pH and ionic strength and using site-blocking reagents.
Plaque assay procedures were developed for bacteriophage T4 on Escherichia coli cells and poliovirus Type III on monkey kidney cells. Factors influencing the efficiency of plaque formation were investigated.
The kinetics of bacteriophage T4 adsorption to activated carbon can be described by a reversible second-order equation. The reaction order was first order with respect to both virus and carbon concentration. This kinetic representation, however, is probably incorrect at optimum adsorption conditions, which occurred at a pH of 7.0 and ionic strength of 0.08. At optimum conditions the adsorption rate was satisfactorily described by a diffusion-limited process. Interpretation of adsorption data by a development of the diffusion equation for Langmuir adsorption yielded a diffusion coefficient of 12 X 10-8 cm2/sec for bacteriophage T4. This diffusion coefficient is in excellent agreement with the accepted value of 8 X 10-8 cm2/sec. A diffusion-limited theory may also represent adsorption at conditions other than the maximal. A clear conclusion on the limiting process cannot be made.
Adsorption of bacteriophage T4 to activated carbon obeys the Langmuir isotherm and is thermodynamically reversible. Thus virus is not inactivated by adsorption. Adsorption is unimolecular with very inefficient use of the available carbon surface area. The virus is probably completely excluded from pores due to its size.
Adsorption is of a physical nature and independent of temperature. Attraction is due to electrostatic forces between the virus and carbon. Effects of pH and ionic strength indicated that carboxyl groups, amino groups, and the virus's tail fibers are involved in the attachment of virus to carbon. The active sites on activated carbon for adsorption of bacteriophage T4 are carboxyl groups. Adsorption can be completely blocked by esterifying these groups.