2 resultados para 37.139.442
em CaltechTHESIS
Resumo:
̄pp backward elastic scattering has been measured for the cos θcm region between – 1.00 and – 0.88 and for the incident ̄p laboratory momentum region between 0.70 and 2.37 GeV/c. These measurements, done in intervals of approximately 0.1 GeV/c, have been performed at the Alternating Gradient Synchrotron at Brookhaven National Laboratory during the winter of 1968. The measured differential cross sections, binned in cos θcm intervals of 0.02, have statistical errors of about 10%. Backward dipping exists below 0.95 GeV/c and backward peaking above 0.95 GeV/c. The 180˚ differential cross section extrapolated from our data shows a sharp dip centered at 0.95 GeV/c and a broad hump centered near 1.4 GeV/c. Our data have been interpreted in terms of resonance effects and in terms of diffraction dominance effects.
Resumo:
A number of recent experiments have suggested the possibility of a highly inelastic resonance in K+p scattering. To study the inelastic K+p reactions, a 400 K exposure has been taken at the L.R.L. 25 inch bubble chamber. The data are spread over seven K+ momenta between 1.37 and 2.17 GeV/c.
Cross-sections have been measured for the reaction K+p → pK°π+ which is dominated by the quasi-two body channels K∆ and K*N. Both these channels are strongly peripheral, as at other momenta. The decay of the ∆ is in good agreement with the predictions of the rho-photon analogy of Stodolsky and Sakurai. The data on the K*p channel show evidence of both pseudo scalar and vector exchange.
Cross-sections for the final state pK+π+π- shows a strong contribution from the quasi-two body channel K*∆. This reaction is also very peripheral even at threshold. The decay angular distributions indicate the reaction is dominated as at higher momenta by a pion exchange mechanism. The data are also in good agreement with the quark model predictions of Bialas and Zalewski for the K* and ∆ decay.