3 resultados para 315

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The organometallic chemistry of the hexagonally close-packed Ru(001) surface has been studied using electron energy loss spectroscopy and thermal desorption mass spectrometry. The molecules that have been studied are acetylene, formamide and ammonia. The chemistry of acetylene and formamide has also been investigated in the presence of coadsorbed hydrogen and oxygen adatoms.

Acetylene is adsorbed molecularly on Ru(001) below approximately 230 K, with rehybridization of the molecule to nearly sp^3 occurring. The principal decomposition products at higher temperatures are ethylidyne (CCH_3) and acetylide (CCH) between 230 and 350 K, and methylidyne (CH) and surface carbon at higher temperatures. Some methylidyne is stable to approximately 700 K. The preadsorption of hydrogen does not alter the decomposition products of acetylene, but reduces the saturation coverage and also leads to the formation of a small amount of ethylene (via an η^2-CHCH_2 species) which desorbs molecularly near 175 K. Preadsorbed oxygen also reduces the saturation coverage of acetylene but has virtually no effect on the nature of the molecularly chemisorbed acetylene. It does, however, lead to the formation of an sp^2-hybridized vinylidene (CCH_2) species in the decomposition of acetylene, in addition to the decomposition products that are formed on the clean surface. There is no molecular desorption of chemisorbed acetylene from clean Ru(001), hydrogen-presaturated Ru(001), or oxygen-presaturated Ru(001).

The adsorption and decomposition of formamide has been studied on clean Ru(001), hydrogen-presaturated Ru(001), and Ru(001)-p(1x2)-O (oxygen adatom coverage = 0.5). On clean Ru(001), the adsorption of low coverages of formamide at 80 K results in CH bond cleavage and rehybridization of the carbonyl double bond to produce an η^2 (C,O)-NH_2CO species. This species is stable to approximately 250 K at which point it decomposes to yield a mixture of coadsorbed carbon monoxide, ammonia, an NH species and hydrogen adatoms. The decomposition of NH to hydrogen and nitrogen adatoms occurs between 350 and 400 K, and the thermal desorption products are NH_3 (-315 K), H_2 (-420 K), CO (-480 K) and N_2 (-770 K). At higher formamide coverages, some formamide is adsorbed molecularly at 80 K, leading both to molecular desorption and to the formation of a new surface intermediate between 300 and 375 K that is identified tentatively as η^1(N)-NCHO. On Ru(001)- p(1x2)-O and hydrogen-presaturated Ru(001), formamide adsorbs molecularly at 80 K in an η^1(O)- NH_2CHO configuration. On the oxygen-precovered surface, the molecularly adsorbed formamide undergoes competing desorption and decomposition, resulting in the formation of an η^2(N,O)-NHCHO species (analogous to a bidentate formate) at approximately 265 K. This species decomposes near 420 K with the evolution of CO and H_2 into the gas phase. On the hydrogen precovered surface, the Η^1(O)-NH_2CHO converts below 200 K to η^2(C,O)-NH_2CHO and η^2(C,O)-NH^2CO, with some molecular desorption occurring also at high coverage. The η^2(C,O)-bonded species decompose in a manner similar to the decomposition of η^2(C,O)-NH_2CO on the clean surface, although the formation of ammonia is not detected.

Ammonia adsorbs reversibly on Ru(001) at 80 K, with negligible dissociation occurring as the surface is annealed The EEL spectra of ammonia on Ru(001) are very similar to those of ammonia on other metal surfaces. Off-specular EEL spectra of chemisorbed ammonia allow the v(Ru-NH_3) and ρ(NH_3) vibrational loss features to be resolved near 340 and 625 cm^(-1), respectively. The intense δ_g (NH_3) loss feature shifts downward in frequency with increasing ammonia coverage, from approximately 1160 cm^(-1) in the low coverage limit to 1070 cm^(-1) at saturation. In coordination compounds of ammonia, the frequency of this mode shifts downward with decreasing charge on the metal atom, and its downshift on Ru(001) can be correlated with the large work function decrease that the surface has previously been shown to undergo when ammonia is adsorbed. The EELS data are consistent with ammonia adsorption in on-top sites. Second-layer and multilayer ammonia on Ru(001) have also been characterized vibrationally, and the results are similar to those obtained for other metal surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and the electrical and magnetic properties of an amorphous alloy containing approximately 80 at .% iron, 13 at.% phos phorus and 7 at.% carbon (Fe_(80)Fe_(13)C_7) obtained by rapid quenching from the liquid state have been studied. Transmission electron diffraction data confirm the amorphous nature of this alloy. An analysis of the radial distribution function obtained from X-ray diffraction data indicates that the number of nearest neighbors is approximately seven, at a distance of 2.6A. The structure of the alloy can be related to that of silicate glasses and is based on a random arrangement of trigonal prisms of Fe_2P and Fe_3C types in which the iron atoms have an average ligancy of seven. Electrical resistance measurements show that the alloys are metallic. A minimum in the electrical resistivity vs. temperature curve is observed between 10° K to 50° K depending on the specimen, and the temperature at which the minimum occurs is related to the degree of local ordering. The Fe-P-C amorphous alloys are ferromagnetic. The Curie temperature measured by the induction method and by Mossbauer spectroscopy is 315° C. The field dependence of the magneto-resistance at temperatures from liquid helium to room temperature is similar to that found in crystalline iron. The ordinary Hall coefficient is approximately 10^(-11) volt-cm/amp-G. The spontaneous Hall coefficient is about 0.6 x 10^(-9) volt-cm/amp-G and is practically independent of temperature from liquid helium temperature up to 300° c.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The differential energy spectra of cosmic-ray protons and He nuclei have been measured at energies up to 315 MeV/nucleon using balloon- and satellite-borne instruments. These spectra are presented for solar quiet times for the years 1966 through 1970. The data analysis is verified by extensive accelerator calibrations of the detector systems and by calculations and measurements of the production of secondary protons in the atmosphere.

The spectra of protons and He nuclei in this energy range are dominated by the solar modulation of the local interstellar spectra. The transport equation governing this process includes as parameters the solar-wind velocity, V, and a diffusion coefficient, K(r,R), which is assumed to be a scalar function of heliocentric radius, r, and magnetic rigidity, R. The interstellar spectra, jD, enter as boundary conditions on the solutions to the transport equation. Solutions to the transport equation have been calculated for a broad range of assumed values for K(r,R) and jD and have been compared with the measured spectra.

It is found that the solutions may be characterized in terms of a dimensionless parameter, ψ(r,R) = r V dr'/(K(r',R). The amount of modulation is roughly proportional to ψ. At high energies or far from the Sun, where the modulation is weak, the solution is determined primarily by the value of ψ (and the interstellar spectrum) and is not sensitive to the radial dependence of the diffusion coefficient. At low energies and for small r, where the effects of adiabatic deceleration are found to be large, the spectra are largely determined by the radial dependence of the diffusion coefficient and are not very sensitive to the magnitude of ψ or to the interstellar spectra. This lack of sensitivity to jD implies that the shape of the spectra at Earth cannot be used to determine the interstellar intensities at low energies.

Values of ψ determined from electron data were used to calculate the spectra of protons and He nuclei near Earth. Interstellar spectra of the form jD α (W - 0.25m)-2.65 for both protons and He nuclei were found to yield the best fits to the measured spectra for these values of ψ, where W is the total energy and m is the rest energy. A simple model for the diffusion coefficient was used in which the radial and rigidity dependence are separable and K is independent of radius inside a modulation region which has a boundary at a distance D. Good agreement was found between the measured and calculated spectra for the years 1965 through 1968, using typical boundary distances of 2.7 and 6.1 A.U. The proton spectra observed in 1969 and 1970 were flatter than in previous years. This flattening could be explained in part by an increase in D, but also seemed to require that a noticeable fraction of the observed protons at energies as high at 50 to 100 MeV be attributed to quiet-time solar emission. The turnup in the spectra at low energies observed in all years was also attributed to solar emission. The diffusion coefficient used to fit the 1965 spectra is in reasonable agreement with that determined from the power spectra of the interplanetary magnetic field (Jokipii and Coleman, 1968). We find a factor of roughly 3 increase in ψ from 1965 to 1970, corresponding to the roughly order of magnitude decrease in the proton intensity at 250 MeV. The change in ψ might be attributed to a decrease in the diffusion coefficient, or, if the diffusion coefficient is essentially unchanged over that period (Mathews et al., 1971), might be attributed to an increase in the boundary distance, D.