2 resultados para 21-209A

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two lowest T = 3/2 levels in 21Na have been studied in the 19F(3He, n), 20Ne (p,p) and 20Ne (p,p’) reactions, and their excitation energies, spins, parities and widths have been determined. In a separate investigation, branching ratios were measured for the isospin-nonconserving particle decays of the lowest T = 3/2 levels in 17O and 17F to the ground state and first two excited states of 16O, by studying the 15N(3He,n) 17F*(p) 16O and 18O(3He, α)17O*(n) 16O reactions.

The 19F(3He,n) 21Na reaction was studied at incident energies between 4.2 and 5.9 MeV using a pulsed-beam neutron-time-of-flight spectrometer. Two T = 3/2 levels were identified at excitation energies of 8.99 ± 0.05 MeV (J > ½) and 9.22 ± 0.015 MeV (J π = ½+, Γ ˂ 40 keV). The spins and parities were determined by a comparison of the measured angular distributions with the results of DWBA calculations.

These two levels were also obsesrved as isospin-forbidden resonances in the 20Ne(p,p) and 20Ne(p,p’) reactions. Excitation energies were measured and spins, parities, and widths were determined from a single level dispersion theory analysis. The following results were obtained:

Ex = 8.973 ± 0.007 MeV, J π = 5/2 + or 3/2+, Γ ≤ 1.2 keV,

Γpo = 0.1 ± 0.05 keV; Ex = 9.217 ± 0.007 MeV, Jπ = ½ +,

Γ = 2.3 ± 0.5 keV, Γpo = 1.1 ± 0.3 keV.

Isospin assignments were made on the basis of excitation energies, spins, parities, and widths.

Branching ratios for the isospin-nonconserving proton decays of the 11.20 MeV, T = 3/2 level in 17F were measured by the 15N(3He,n) 17 F*(p) 16O reaction to be 0.088 ± 0.016 to the ground state of 16O and 0.22 ± 0.04 to the unresolved 6.05 and 6.13 MeV levels of 16O. Branching ratios for the neutron decays of the analogous T = 3/2 level, at 11.08 MeV in 17O, were measured by the 16O(3He, α)17O*(n)16O reaction to be 0.91 ± 0.15 to the ground state of 16O and 0.05 ± 0.02 to the unresolved 6.05 and 6.13 MeV states. By comparing the ratios of reduced widths for the mirror decays, the form of the isospin impurity in the T = 3/2 levels is shown to depend on Tz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PART I

The total cross-section for the reaction 21Ne(α, n)24Mg has been measured in the energy range 1.49 Mev ≤ Ecm ≤ 2.6 Mev. The cross-section factor, S(O), for this reaction has been determined, by means of an optical model calculation, to be in the range 1.52 x 1012 mb-Mev to 2.67 x 1012 mb-Mev, for interaction radii in the range 5.0 fm to 6.6 fm. With S(O) ≈ 2 x 1012 mb-Mev, the reaction 21Ne(α, n)24Mg can produce a large enough neutron flux to be a significant astrophysical source of neutrons.

PART II

The reaction12C(3He, p)14N has been studied over the energy range 12 Mev ≤ Elab ≤ 18 Mev. Angular distributions of the proton groups leading to the lowest seven levels in 14N were obtained.

Distorted wave calculations, based on two-nucleon transfer theory, were performed, and were found to be reliable for obtaining the value of the orbital angular momentum transferred. The present work shows that such calculations do not yield unambiguous values for the spectroscopic factors.