3 resultados para 1995_01271911 MOC-13

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of coupled-channel differential equations based on a rotationally distorted optical potential is used to calculate the wave functions required to evaluate the gamma ray transition rate from the first excited state to the ground state in ^(13)C and ^(13)N. The bremsstrahlung differential cross section of low energy protons is also calculated and compared with existing data. The marked similarity between the potentials determined at each resonance level in both nuclei supports the hypothesis of the charge symmetry of nuclear forces by explaining the deviation of the ratios of the experimental E1 transition strengths from unity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Described in this thesis are measurements made of the thick-target neutron yield from the reaction 13C(α, n)16O. The yield was determined for laboratory bombarding energies between 0.475 and 0.700 MeV, using a stilbene crystal neutron detector and pulse-shape discrimination to eliminate gamma rays. Stellar temperatures between 2.5 and 4.5 x 108 oK are involved in this energy region. From the neutron yield was extracted the astrophysical cross-section factor S(E), which was found to fit a linear function: S(E) = [(5.48 ± 1.77) + (12.05 ± 3.91)E] x 105 MeV-barns, center-of-mass system. The stellar rate of the 13C(α, n)16O reaction if calculated, and discussed with reference to helium burning and neutron production in the core of a giant star.

Results are also presented of measurements carried out on the reaction 9Be(α, n)12C, taken with a thin Be target. The bombarding energy-range covered was from 0.340 to 0.680 MeV, with excitation curves for the ground- and first excited-state neutrons being reported. Some angular distributions were also measured. Resonances were found at bombarding energies of ELAB = 0.520 MeV (ECM = 0.360 MeV, Γ ~ 55 keV CM, ωγ = 3.79 eV CM) and ELAB = 0.600 MeV (ECM = 0.415 MeV, Γ ˂ 4 keV CM, ωγ = 0.88 eV CM). The astrophysical rate of the 9Be(α, n)12C reaction due to these resonances is calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution, natural-abundance 13C spectra have been obtained from a wide variety of organic compounds; 13C chemical shifts and coupling constants have been correlated with other molecular properties.

Geminal and vicinal, carbon-proton couplings in benzene and the five- and six-membered aromatic heterocycles have been related to the corresponding proton-proton couplings in substituted ethylenes. The carbon-proton coupling constants in benzene are JCCH = + 1.0, JCCCH = +7.4 and JCCCH = -1.1 Hz. Extended Hückel wavefunctions are uniformly poor in explaining the long-range, carbon-proton couplings in aromatic systems.

Couplings between carbon and elements other than hydrogen have been observed in proton decoupled 13C spectra. All of the carbons in fluorobenzene and 1-fluoronaphthalene, but only six of the carbons in 2-fluoronaphthalene are coupled to the fluorine. One-bond, carbon-phosphorus coupling in trialkylphosphines is negative, while one-bond, carbon-phosphorus coupling in tetra-alkylphosphonium ions is positive. Atoms which do not use hybrid orbitals to form bonds to carbon (F, P(III), Se, Te) may have negative, one-bond coupling constants because of the failure of the average energy approximation. One-bond couplings between carbon and carbon, silicon, tin, lead and mercury appear to be explainable in terms of an effective nuclear charge and the s-bond order of the metal. Couplings between carbon and nitrogen and phosphorus (IV) have significant negative contributions to the Fermi contact coupling expression, though, within one series, correlations with s-bond order may be valid. Carbon-carbon coupling in cyclopropane derivatives (10-15 Hz) is consistent with a high degree of p character in the interior orbitals. Some two- and three-bond carbon-carbon coupling constants have also been observed.

Substituent effects of hydroxyl groups on the 13C chemical shifts of continuous-chain alkanes depend both on steric and electronic factors. The hydroxyl substituent effects in the long-chain, primary alcohols are α = -48.3, β = -10.2, and γ = +6.0 ppm. The upfield γ effect is attributed to steric crowding in the gauche conformations. Additivity of the hydroxyl and carbonyl and alkyl substituent effects in alkyl-substituted cyclohexanols and cyclohexanones has been demonstrated.