3 resultados para 166-1006A

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

β-lactamases are a group of enzymes that confer resistance to penam and cephem antibiotics by hydrolysis of the β-lactam ring, thereby inactivating the antibiotic. Crystallographic and computer modeling studies of RTEM-1 β-lactamase have indicated that Asp 132, a strictly conserved residue among the class A β-lactamases, appears to be involved in substrate binding, catalysis, or both. To study the contribution of residue 132 to β-lactamase function, site saturation mutagenesis was used to generate mutants coding for all 20 amino acids at position 132. Phenotypic screening of all mutants indicated that position 132 is very sensitive to amino acid changes, with only N132C, N132D, N132E, and N132Q showing any appreciable activity. Kinetic analysis of three of these mutants showed increases in K_M, along with substantial decreases in k_(cat). Efforts to trap a stable acyl-enzyme intermediate were unsuccessfuL These results indicate that residue 132 is involved in substrate binding, as well as catalysis, and supports the involvement of this residue in acylation as suggested by Strynadka et al.

Crystallographic and computer modeling studies of RTEM-1 β-lactamase have indicated that Lys 73 and Glu 166, two strictly conserved residues among the class A β-lactamases, appear to be involved in substrate binding, catalysis, or both. To study the contribution of these residues to β-lactamase function, site saturation mutagenesis was used to generate mutants coding for all 20 amino acids at positions 73 and 166. Then all 400 possible combinations of mutants were created by combinatorial mutagenesis. The colonies harboring the mutants were screened for growth in the presence of ampicillin. The competent colonys' DNA were sequenced, and kinetic parameters investigated. It was found that lysine is essential at position 73, and that position 166 only tolerated fairly conservative changes (Aspartic acid, Histidine, and Tyrosine). These functional mutants exhibited decreased kcat's, but K_M was close to wild-type levels. The results of the combinatorial mutagenesis experiments indicate that Lysis absolutely required for activity at position 73; no mutation at residue 166 can compensate for loss of the long side chain amine. The active mutants found--K73K/E166D, K73KIE166H, and K73KIE166Y were studied by kinetic analysis. These results reaffirmed the function of residue 166 as important in catalysis, specifically deacylation.

The identity of the residue responsible for enhancing the active site serine (Ser 70) in RTEM-1 β-lactamase has been disputed for some time. Recently, analysis of a crystal structure of RTEM-1 β-lactamase with covalently bound intermediate was published, and it was suggested that Lys 73, a strictly conserved residue among the class A β-lactamases, was acting as a general base, activating Ser 70. For this to be possible, the pK_a of Lys 73 would have to be depressed significantly. In an attempt to assay the pK_a of Lys 73, the mutation K73C was made. This mutant protein can be reacted with 2-bromoethylamine, and activity is restored to near wild type levels. ^(15)N-2-bromoethylamine hydrobromide and ^(13)C-2-bromoethylamine hydrobromide were synthesized. Reacting these compounds with the K73C mutant gives stable isotopic enrichment at residue 73 in the form of aminoethylcysteine, a lysine homologue. The pK_a of an amine can be determined by NMR titration, following the change in chemical shift of either the ^(15)N-amine nuclei or adjacent Be nuclei as pH is changed. Unfortunately, low protein solubility, along with probable label scrambling in the Be experiment, did not permit direct observation of either the ^(15)N or ^(13)C signals. Indirect detection experiments were used to observe the protons bonded directly to the ^(13)C atoms. Two NMR signals were seen, and their chemical shift change with pH variation was noted. The peak which was determined to correspond to the aminoethylcysteine residue shifted from 3.2 ppm down to 2.8 ppm over a pH range of 6.6 to 12.5. The pK_a of the amine at position 73 was determined to be ~10. This indicates that residue 73 does not function as a general base in the acylation step of the reaction. However the experimental measurement takes place in the absence of substrate. Since the enzyme undergoes conformational changes upon substrate binding, the measured pK_a of the free enzyme may not correspond to the pK_a of the enzyme substrate complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energies and relative intensities of gamma transitions in 152Sm, 152Gd, 154Gd, 166Er, and 232U following radioactive decay have been measured with a Ge(Li) spectrometer. A peak fitting program has been developed to determine gamma ray energies and relative intensities with precision sufficient to give a meaningful test of nuclear models. Several previously unobserved gamma rays were placed in the nuclear level schemes. Particular attention has been paid to transitions from the beta and gamma vibrational bands, since the gamma ray branching ratios are sensitive tests of configuration mixing in the nuclear levels. As the reduced branching ratios depend on the multipolarity of the gamma transitions, experiments were performed to measure multipole mixing ratios for transitions from the gamma vibrational band. In 154Gd, angular correlation experiments showed that transitions from the gamma band to the ground state band were predominantly electric quadrupole, in agreement with the rotational model. In 232U, the internal conversion spectrum has been studied with a Si(Li) spectrometer constructed for electron spectroscopy. The strength of electric monopole transitions and the multipolarity of some gamma transitions have been determined from the measured relative electron intensities.

The results of the experiments have been compared with the rotational model and several microscopic models. Relative B(E2) strengths for transitions from the gamma band in 232U and 166Er are in good agreement with a single parameter band mixing model, with values of z2= 0.025(10) and 0.046(2), respectively. Neither the beta nor the gamma band transition strengths in 152Sm and 154Gd can be accounted for by a single parameter theory, nor can agreement be found by considering the large mixing found between the beta and gamma bands. The relative B(E2) strength for transitions from the gamma band to the beta band in 232U is found to be five times greater than the strength to the ground state band, indicating collective transitions with strength approximately 15 single particle units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isotope shifts of Kα1 x-ray transitions were measured for the Neodymium isotopes Nd 142, 143, 144, 145, 146, 148 and 150, the Samarium isotopes Sm 147, 148, 149, 150, 152 and 154, the Gadolinium isotopes Gd 154, 155, 156, 157, 158 and 160, the Dysprosium isotopes Dy 162 and 164, the Erbium isotopes Er 166, 168 and 170, the Hafnium isotopes Hf 178 and 180 and the Lead isotopes Pb 204, 206, 207 and 208. A curved crystal Cauchois spectrometer was used. The analysis of the measurement furnished the variation of the mean square charge radius of the nucleus, δ˂r2˃, for 23 isotope pairs. The experimental results were compared with theoretical values from nuclear models. Combining the x-ray shifts and the optical shifts in Nd and Sm yielded the optical mass shifts. An anomaly was observed in the odd-even shifts when the optical and the x-ray shifts were plotted against each other.