2 resultados para 1:12 Phosphomolybdic
em CaltechTHESIS
Resumo:
Observations of the Galactic center region black hole candidate 1E 1740.7-2942 have been carried out using the Caltech Gamma-Ray Imaging Payload (GRIP), the Röntgensatellit (ROSAT) and the Very Large Array (VLA). These multiwavelength observations have helped to establish the association between a bright emitter of hard X-rays and soft γ-rays, the compact core of a double radio jet source, and the X-ray source, 1E 1740.7-2942. They have also provided information on the X-ray and hard X-ray spectrum.
The Galactic center region was observed by GRIP during balloon flights from Alice Springs, NT, Australia on 1988 April 12 and 1989 April 3. These observations revealed that 1E 1740.7-2942 was the strongest source of hard X-rays within ~10° of the Galactic center. The source spectrum from each flight is well fit by a single power law in the energy range 35-200 keV. The best-fit photon indices and 100 keV normalizations are: γ = (2.05 ± 0.15) and K_(100) = (8.5 ± 0.5) x 10^(-5) cm^(-2) s^(-1) keV^(-1) and γ = (2.2 ± 0.3) and K_(100) = (7.0 ± 0.7) x 10^(-5) cm^(-2) s^(-1) keV^(-1) for the 1988 and 1989 observations respectively. No flux above 200 keV was detected during either observation. These values are consistent with a constant spectrum and indicate that 1E 1740.7-2942 was in its normal hard X-ray emission state. A search on one hour time scales showed no evidence for variability.
The ROSAT HRI observed 1E 1740.7-2942 during the period 1991 March 20-24. An improved source location has been derived from this observation. The best fit coordinates (J2000) are: Right Ascension = 17^h43^m54^s.9, Declination = -29°44'45".3, with a 90% confidence error circle of radius 8".5. The PSPC observation was split between periods from 1992 September 28- October 4 and 1993 March 23-28. A thermal bremsstrahlung model fit to the data yields a column density of N_H = 1.12^(+1.51)_(0.18) x cm^(-2) , consistent with earlier X- ray measurements.
We observed the region of the Einstein IPC error circle for 1E 1740.7-2942 with the VLA at 1.5 and 4.9 GHz on 1989 March 2. The 4.9 GHz observation revealed two sources. Source 'A', which is the core of a double aligned radio jet source (Mirabel et al. 1992), lies within our ROSAT error circle, further strengthening its identification with 1E 1740.7-2942.
Resumo:
A classical question in combinatorics is the following: given a partial Latin square $P$, when can we complete $P$ to a Latin square $L$? In this paper, we investigate the class of textbf{$epsilon$-dense partial Latin squares}: partial Latin squares in which each symbol, row, and column contains no more than $epsilon n$-many nonblank cells. Based on a conjecture of Nash-Williams, Daykin and H"aggkvist conjectured that all $frac{1}{4}$-dense partial Latin squares are completable. In this paper, we will discuss the proof methods and results used in previous attempts to resolve this conjecture, introduce a novel technique derived from a paper by Jacobson and Matthews on generating random Latin squares, and use this novel technique to study $ epsilon$-dense partial Latin squares that contain no more than $delta n^2$ filled cells in total.
In Chapter 2, we construct completions for all $ epsilon$-dense partial Latin squares containing no more than $delta n^2$ filled cells in total, given that $epsilon < frac{1}{12}, delta < frac{ left(1-12epsilonright)^{2}}{10409}$. In particular, we show that all $9.8 cdot 10^{-5}$-dense partial Latin squares are completable. In Chapter 4, we augment these results by roughly a factor of two using some probabilistic techniques. These results improve prior work by Gustavsson, which required $epsilon = delta leq 10^{-7}$, as well as Chetwynd and H"aggkvist, which required $epsilon = delta = 10^{-5}$, $n$ even and greater than $10^7$.
If we omit the probabilistic techniques noted above, we further show that such completions can always be found in polynomial time. This contrasts a result of Colbourn, which states that completing arbitrary partial Latin squares is an NP-complete task. In Chapter 3, we strengthen Colbourn's result to the claim that completing an arbitrary $left(frac{1}{2} + epsilonright)$-dense partial Latin square is NP-complete, for any $epsilon > 0$.
Colbourn's result hinges heavily on a connection between triangulations of tripartite graphs and Latin squares. Motivated by this, we use our results on Latin squares to prove that any tripartite graph $G = (V_1, V_2, V_3)$ such that begin{itemize} item $|V_1| = |V_2| = |V_3| = n$, item For every vertex $v in V_i$, $deg_+(v) = deg_-(v) geq (1- epsilon)n,$ and item $|E(G)| > (1 - delta)cdot 3n^2$ end{itemize} admits a triangulation, if $epsilon < frac{1}{132}$, $delta < frac{(1 -132epsilon)^2 }{83272}$. In particular, this holds when $epsilon = delta=1.197 cdot 10^{-5}$.
This strengthens results of Gustavsson, which requires $epsilon = delta = 10^{-7}$.
In an unrelated vein, Chapter 6 explores the class of textbf{quasirandom graphs}, a notion first introduced by Chung, Graham and Wilson cite{chung1989quasi} in 1989. Roughly speaking, a sequence of graphs is called "quasirandom"' if it has a number of properties possessed by the random graph, all of which turn out to be equivalent. In this chapter, we study possible extensions of these results to random $k$-edge colorings, and create an analogue of Chung, Graham and Wilson's result for such colorings.