3 resultados para [JEL:J40] Labor and Demographic Economics - Particular Labor Markets - General
em CaltechTHESIS
Resumo:
This thesis examines foundational questions in behavioral economics—also called psychology and economics—and the neural foundations of varied sources of utility. We have three primary aims: First, to provide the field of behavioral economics with psychological theories of behavior that are derived from neuroscience and to use those theories to identify novel evidence for behavioral biases. Second, we provide neural and micro foundations of behavioral preferences that give rise to well-documented empirical phenomena in behavioral economics. Finally, we show how a deep understanding of the neural foundations of these behavioral preferences can feed back into our theories of social preferences and reference-dependent utility.
The first chapter focuses on classical conditioning and its application in identifying the psychological underpinnings of a pricing phenomenon. We return to classical conditioning again in the third chapter where we use fMRI to identify varied sources of utility—here, reference dependent versus direct utility—and cross-validate our interpretation with a conditioning experiment. The second chapter engages social preferences and, more broadly, causative utility (wherein the decision-maker derives utility from making or avoiding particular choices).
Resumo:
Time, risk, and attention are all integral to economic decision making. The aim of this work is to understand those key components of decision making using a variety of approaches: providing axiomatic characterizations to investigate time discounting, generating measures of visual attention to infer consumers' intentions, and examining data from unique field settings.
Chapter 2, co-authored with Federico Echenique and Kota Saito, presents the first revealed-preference characterizations of exponentially-discounted utility model and its generalizations. My characterizations provide non-parametric revealed-preference tests. I apply the tests to data from a recent experiment, and find that the axiomatization delivers new insights on a dataset that had been analyzed by traditional parametric methods.
Chapter 3, co-authored with Min Jeong Kang and Colin Camerer, investigates whether "pre-choice" measures of visual attention improve in prediction of consumers' purchase intentions. We measure participants' visual attention using eyetracking or mousetracking while they make hypothetical as well as real purchase decisions. I find that different patterns of visual attention are associated with hypothetical and real decisions. I then demonstrate that including information on visual attention improves prediction of purchase decisions when attention is measured with mousetracking.
Chapter 4 investigates individuals' attitudes towards risk in a high-stakes environment using data from a TV game show, Jeopardy!. I first quantify players' subjective beliefs about answering questions correctly. Using those beliefs in estimation, I find that the representative player is risk averse. I then find that trailing players tend to wager more than "folk" strategies that are known among the community of contestants and fans, and this tendency is related to their confidence. I also find gender differences: male players take more risk than female players, and even more so when they are competing against two other male players.
Chapter 5, co-authored with Colin Camerer, investigates the dynamics of the favorite-longshot bias (FLB) using data on horse race betting from an online exchange that allows bettors to trade "in-play." I find that probabilistic forecasts implied by market prices before start of the races are well-calibrated, but the degree of FLB increases significantly as the events approach toward the end.
Resumo:
This thesis belongs to the growing field of economic networks. In particular, we develop three essays in which we study the problem of bargaining, discrete choice representation, and pricing in the context of networked markets. Despite analyzing very different problems, the three essays share the common feature of making use of a network representation to describe the market of interest.
In Chapter 1 we present an analysis of bargaining in networked markets. We make two contributions. First, we characterize market equilibria in a bargaining model, and find that players' equilibrium payoffs coincide with their degree of centrality in the network, as measured by Bonacich's centrality measure. This characterization allows us to map, in a simple way, network structures into market equilibrium outcomes, so that payoffs dispersion in networked markets is driven by players' network positions. Second, we show that the market equilibrium for our model converges to the so called eigenvector centrality measure. We show that the economic condition for reaching convergence is that the players' discount factor goes to one. In particular, we show how the discount factor, the matching technology, and the network structure interact in a very particular way in order to see the eigenvector centrality as the limiting case of our market equilibrium.
We point out that the eigenvector approach is a way of finding the most central or relevant players in terms of the “global” structure of the network, and to pay less attention to patterns that are more “local”. Mathematically, the eigenvector centrality captures the relevance of players in the bargaining process, using the eigenvector associated to the largest eigenvalue of the adjacency matrix of a given network. Thus our result may be viewed as an economic justification of the eigenvector approach in the context of bargaining in networked markets.
As an application, we analyze the special case of seller-buyer networks, showing how our framework may be useful for analyzing price dispersion as a function of sellers and buyers' network positions.
Finally, in Chapter 3 we study the problem of price competition and free entry in networked markets subject to congestion effects. In many environments, such as communication networks in which network flows are allocated, or transportation networks in which traffic is directed through the underlying road architecture, congestion plays an important role. In particular, we consider a network with multiple origins and a common destination node, where each link is owned by a firm that sets prices in order to maximize profits, whereas users want to minimize the total cost they face, which is given by the congestion cost plus the prices set by firms. In this environment, we introduce the notion of Markovian traffic equilibrium to establish the existence and uniqueness of a pure strategy price equilibrium, without assuming that the demand functions are concave nor imposing particular functional forms for the latency functions. We derive explicit conditions to guarantee existence and uniqueness of equilibria. Given this existence and uniqueness result, we apply our framework to study entry decisions and welfare, and establish that in congested markets with free entry, the number of firms exceeds the social optimum.